Abstract (eng)
Disks around young low/intermediate mass stars are often called protoplanetary disks as they are considered to be the birthplaces of planets. To understand their complex structure and composition accurate radiative transfer modelling is necessary.
This thesis is part of a larger project for modelling of passive, irradiated protoplanetary disks with the stellar atmosphere code PHOENIX/3D. This work is limited to the 3D dust continuum radiative transfer including the calculation of the disk temperature structure.
We present a new method for solving the radiative equilibrium equation based on the Approximate Lambda-Operator technique used in PHOENIX/3D for the radiative transfer problem. To test our implementations we use the benchmark problem defined in Pinte et al. 2009.
The new temperature correction scheme shows good convergence properties and converges for all four test cases defined in the benchmark. For large areas of the disk the results of the new scheme are in good agreement with the results of the benchmark. However, in the deep inner region of the disk, where the stellar radiation does not penetrate, the estimated temperature is always too high. The deviations depend on the optical depth, ranging from +20%, for the lowest optical depth test case to +65% for the highest optical depth test case. To overcome this problem large spatial grids are necessary, which increases the computational needs, and therefore, becomes unreasonable at least for the highest optical depth test cases. So, further improvements concerning the accuracy and the performance are required.