Abstract (eng)
The main topic of this thesis is the study of regularity of CR mappings between ultradifferentiable CR manifolds. Ultradifferentiable is understood in the sense of Denjoy-Carleman classes, i.e.\ subalgebras of smooth functions defined by weight sequences. We consider mainly Denjoy-Carleman classes that are defined by weight sequences, which are regular in the sense of Dyn'kin. In particular, reflection principles of Lamel and Berhanu-Xiao for finitely nondegenerate CR mappings are generalized to the ultradifferentiable category. More precisely, any finitely nondegenerate CR mapping between two ultradifferentiable CR manifolds of the same Denjoy-Carleman class, that extends near a point holomorphically into a wedge, is ultradifferentiable near this point of the same regularity as the manifolds. In order to prove the aforementioned result, a geometric theory of the ultradifferentiable wavefront set with respect to Denjoy-Carleman classes, that was initially defined by Hörmander, is developed for regular weight sequences. In particular, using a theorem of Dyn'kin on the characterizations of elements in regular Denjoy-Carleman class by almost-analytic extensions, a characterization of the ultradifferentiable wavefront set either by almost-analytic extensions into flat wedges or by the generalized FBI transform in the sense of Berhanu-Hounie is proven. This allows to show that the ultradifferentiable wavefront set can be invariantly defined on ultradifferentiable manifolds of the same Denjoy-Carleman class. Moreover an ultradifferentiable microlocal elliptic regularity theorem for vector-valued distributions and partial differential operators with ultradifferentiable coefficients is proven, what generalizes statements of Hörmander, Albanese-Jornet-Oliaro and others.
Besides the proof of the ultradifferentiable reflection principle, the statements mentioned above on the ultradifferentiable are used to generalize directly the results on the regularity of infinitesimal CR automorphisms on smooth abstract CR manifolds by Fürdös-Lamel to
the ultradifferentiable setting.
As a further straightforward application of the microlocal techniques quasianalytic generalizations of statements of Holmgren, Hörmander, Bony and Zachmanoglou about the uniqueness of solutions of homogeneous equations.