You are here: University of Vienna PHAIDRA Detail o:1391640
Title (eng)
Cofinitary groups
Parallel title (deu)
Kofinitäre Gruppen
Author
Maximilian Vötsch
Adviser
Vera Fischer
Assessor
Vera Fischer
Abstract (deu)
Das Thema dieser Arbeit sind kofinitäre Gruppen, eine spezielle Klasse an Untergruppen der unendlichen Permutationsgruppen. Wir beginnen mit einer Übersicht der algebraischen Resultate für diese Gruppen. Die wichtigsten Resultate in diesem Kapitel sind strukturelle Einschränkungen der Kardinalität von kofinitären Gruppen durch ihre Orbitstruktur. In weiterer Folge betrachten wir Konstruktionen von kofinitären Gruppen mittels projektiver Limits und Automorphismen von Boolschen Algebren. Der Rest der Thesis befasst sich mit maximalen kofinitären Gruppen, wobei wir zuerst die möglichen Größen, sowie die kombinatorische Charakteristik a_g betrachten. In Kapitel 4 werden wir Forcing verwenden, um zu jedem Tupel (n, m) in N>0 x N eine maximale kofinitäre Gruppe zu finden welche n unendliche und m endliche Orbits aufweist, wodurch wir unendlich viele nicht isomorphe Gruppen konstruieren können. In Kapitel 5 konstruieren wir mittels Forcing eine maximale kofinitäre Gruppe in welche wir alle abzählbar unendlichen Gruppen einbetten können. Im letzten Kapitel zeigen wir eine Konstruktion, welche uns die möglichen Größen von maximalen kofinitären Gruppen in unserem Modell steuern lässt.
Abstract (eng)
The topic of this thesis is cofinitary groups, which are special subgroups of the infinite permutation group. We will begin by giving an overview of the algebraic properties of cofinitary groups. We will survey the algebraic properties of cofinitary groups, where the main results give us bounds on the size of cofinitary groups based on their orbit structure. We will then examine how to construct cofinitary groups using inverse limits and automorphisms of Boolean algebras. We then begin looking at maximal cofinitary groups and their possible sizes as well as the combinatorial characteristic a_g. In chapter 4 we will use forcing to show that there are infinitely many, non-isomorphic, maximal cofinitary groups, by constructing a group with n infinite and m finite orbits, for any tuple (n, m) in N>0 x N. In chapter 5, we use forcing constructions to show the existence of a maximal cofinitary group into which every countable group embeds. Finally, we show that we can tightly control the possible sizes of cofinitary groups in a model by adapting a novel proof from the theory of maximal almost disjoint families.
Keywords (eng)
Group TheorySet TheoryForcing
Keywords (deu)
GruppentheorieMengenlehreForcing
Subject (deu)
Type (deu)
Persistent identifier
https://phaidra.univie.ac.at/o:1391640
rdau:P60550 (deu)
vii, 70 Seiten
Number of pages
77
Association (deu)
Members (1)
Title (eng)
Cofinitary groups
Parallel title (deu)
Kofinitäre Gruppen
Author
Maximilian Vötsch
Abstract (deu)
Das Thema dieser Arbeit sind kofinitäre Gruppen, eine spezielle Klasse an Untergruppen der unendlichen Permutationsgruppen. Wir beginnen mit einer Übersicht der algebraischen Resultate für diese Gruppen. Die wichtigsten Resultate in diesem Kapitel sind strukturelle Einschränkungen der Kardinalität von kofinitären Gruppen durch ihre Orbitstruktur. In weiterer Folge betrachten wir Konstruktionen von kofinitären Gruppen mittels projektiver Limits und Automorphismen von Boolschen Algebren. Der Rest der Thesis befasst sich mit maximalen kofinitären Gruppen, wobei wir zuerst die möglichen Größen, sowie die kombinatorische Charakteristik a_g betrachten. In Kapitel 4 werden wir Forcing verwenden, um zu jedem Tupel (n, m) in N>0 x N eine maximale kofinitäre Gruppe zu finden welche n unendliche und m endliche Orbits aufweist, wodurch wir unendlich viele nicht isomorphe Gruppen konstruieren können. In Kapitel 5 konstruieren wir mittels Forcing eine maximale kofinitäre Gruppe in welche wir alle abzählbar unendlichen Gruppen einbetten können. Im letzten Kapitel zeigen wir eine Konstruktion, welche uns die möglichen Größen von maximalen kofinitären Gruppen in unserem Modell steuern lässt.
Abstract (eng)
The topic of this thesis is cofinitary groups, which are special subgroups of the infinite permutation group. We will begin by giving an overview of the algebraic properties of cofinitary groups. We will survey the algebraic properties of cofinitary groups, where the main results give us bounds on the size of cofinitary groups based on their orbit structure. We will then examine how to construct cofinitary groups using inverse limits and automorphisms of Boolean algebras. We then begin looking at maximal cofinitary groups and their possible sizes as well as the combinatorial characteristic a_g. In chapter 4 we will use forcing to show that there are infinitely many, non-isomorphic, maximal cofinitary groups, by constructing a group with n infinite and m finite orbits, for any tuple (n, m) in N>0 x N. In chapter 5, we use forcing constructions to show the existence of a maximal cofinitary group into which every countable group embeds. Finally, we show that we can tightly control the possible sizes of cofinitary groups in a model by adapting a novel proof from the theory of maximal almost disjoint families.
Keywords (eng)
Group TheorySet TheoryForcing
Keywords (deu)
GruppentheorieMengenlehreForcing
Subject (deu)
Type (deu)
Persistent identifier
https://phaidra.univie.ac.at/o:1391641
Number of pages
77
Association (deu)