Titel
Ripples in Graphene: A Variational Approach
Autor*in
Manuel Friedrich
Applied Mathematics, Universität Münster
Abstract
Suspended graphene samples are observed to be gently rippled rather than being flat. In Friedrich et al. (Z Angew Math Phys 69:70, 2018), we have checked that this nonplanarity can be rigorously described within the classical molecular-mechanical frame of configurational-energy minimization. There, we have identified all ground-state configurations with graphene topology with respect to classes of next-to-nearest neighbor interaction energies and classified their fine nonflat geometries. In this second paper on graphene nonflatness, we refine the analysis further and prove the emergence of wave patterning. Moving within the frame of Friedrich et al. (2018), rippling formation in graphene is reduced to a two-dimensional problem for one-dimensional chains. Specifically, we show that almost minimizers of the configurational energy develop waves with specific wavelength, independently of the size of the sample. This corresponds remarkably to experiments and simulations.
Stichwort
Mathematical PhysicsStatistical and Nonlinear Physics
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
https://phaidra.univie.ac.at/o:1218538
Erschienen in
Titel
Communications in Mathematical Physics
Band
379
Ausgabe
3
ISSN
0010-3616
Erscheinungsdatum
2020
Seitenanfang
915
Seitenende
954
Verlag
Springer Science and Business Media LLC
Projektnummer
MA14-009 – Vienna Science and Technology Fund (WWTF)
Projektnummer
F 65 – Austrian Science Fund (FWF)
Projektnummer
FR 4083/3-1/I 4354 – Austrian Science Fund (FWF)
Erscheinungsdatum
2020
Zugänglichkeit
Rechteangabe
© The Author(s) 2020

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0