Titel
Stable Gabor phase retrieval for multivariate functions
Autor*in
Philipp Grohs
Autor*in
Martin Rathmair
Abstract
In recent work [P. Grohs and M. Rathmair, Stable Gabor phase retrieval and spectral clustering, Comm. Pure Appl. Math. (2018)] the instabilities of the Gabor phase retrieval problem, i.e., the problem of reconstructing a function f from its spectrogram ∣Gf∣, where Gf(x,y)=∫Rd​f(t)e−π∣t−x∣2e−2πit⋅ydt,x,y∈Rd, have been completely classified in terms of the disconnectedness of the spectrogram. These findings, however, were crucially restricted to the one-dimensional case (d=1) and therefore not relevant for many practical applications. In the present paper we not only generalize the aforementioned results to the multivariate case but also significantly improve on them. Our new results have comprehensive implications in various applications such as ptychography, a highly popular method in coherent diffraction imaging.
Stichwort
Phase retrievalstabilityGabor transformCheeger constantlogarithmic derivative
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
phaidra.univie.ac.at/o:1653670
Erschienen in
Titel
Journal of the European Mathematical Society
Band
24
Ausgabe
5
ISSN
1435-9855
Erscheinungsdatum
2021
Seitenanfang
1593
Seitenende
1615
Publication
European Mathematical Society - EMS - Publishing House GmbH
Erscheinungsdatum
2021
Zugänglichkeit
Rechteangabe
© 2021 European Mathematical Society

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0