Titel
Truncated Affine Rozansky–Witten Models as Extended TQFTs
Autor*in
Ilka Brunner
Arnold Sommerfeld Center, LMU München
Autor*in
Daniel Roggenkamp
Institut für Mathematik, Universität Mannheim
Abstract
We construct extended TQFTs associated to Rozansky–Witten models with target manifolds T∗Cn. The starting point of the construction is the 3-category whose objects are such Rozansky–Witten models, and whose morphisms are defects of all codimensions. By truncation, we obtain a (non-semisimple) 2-category C of bulk theories, surface defects, and isomorphism classes of line defects. Through a systematic application of the cobordism hypothesis we construct a unique extended oriented 2-dimensional TQFT valued in C for every affine Rozansky–Witten model. By evaluating this TQFT on closed surfaces we obtain the infinite-dimensional state spaces (graded by flavour and R-charges) of the initial 3-dimensional theory. Furthermore, we explicitly compute the commutative Frobenius algebras that classify the restrictions of the extended theories to circles and bordisms between them.
Stichwort
Mathematical PhysicsStatistical and Nonlinear Physics
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
phaidra.univie.ac.at/o:1924376
Erschienen in
Titel
Communications in Mathematical Physics
Band
400
ISSN
0010-3616
Erscheinungsdatum
2023
Seitenanfang
371
Seitenende
415
Publication
Springer Science and Business Media LLC
Erscheinungsdatum
2023
Zugänglichkeit
Rechteangabe
© The Author(s) 2023

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0