Titel
Enhancement of Radiation Sensitivity by Cathepsin L Suppression in Colon Carcinoma Cells
... show all
Abstract
Cancer is one of the main causes of death globally. Radiotherapy/Radiation therapy (RT) is one of the most common and effective cancer treatments. RT utilizes high-energy radiation to damage the DNA of cancer cells, leading to their death or impairing their proliferation. However, radiation resistance remains a significant challenge in cancer treatment, limiting its efficacy. Emerging evidence suggests that cathepsin L (cath L) contributes to radiation resistance through multiple mechanisms. In this study, we investigated the role of cath L, a member of the cysteine cathepsins (caths) in radiation sensitivity, and the potential reduction in radiation resistance by using the specific cath L inhibitor (Z-FY(tBu)DMK) or by knocking out cath L with CRISPR/Cas9 in colon carcinoma cells (caco-2). Cells were treated with different doses of radiation (2, 4, 6, 8, and 10), dose rate 3 Gy/min. In addition, the study conducted protein expression analysis by western blot and immunofluorescence assay, cytotoxicity MTT, and apoptosis assays. The results demonstrated that cath L was upregulated in response to radiation treatment, compared to non-irradiated cells. In addition, inhibiting or knocking out cath L led to increased radiosensitivity in contrast to the negative control group. This may indicate a reduced ability of cancer cells to recover from radiation-induced DNA damage, resulting in enhanced cell death. These findings highlight the possibility of targeting cath L as a therapeutic strategy to enhance the effectiveness of RT. Further studies are needed to elucidate the underlying molecular mechanisms and to assess the translational implications of cath L knockout in clinical settings. Ultimately, these findings may contribute to the development of novel treatment approaches for improving outcomes of RT in cancer patients.
Stichwort
cancerradiotherapycath Lknockoutinhibitorcolon carcinomaradiation dose
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
https://phaidra.univie.ac.at/o:2044428
Erschienen in
Titel
International Journal of Molecular Sciences
Band
24
Ausgabe
23
ISSN
1422-0067
Erscheinungsdatum
2023
Verlag
MDPI AG
Erscheinungsdatum
2023
Zugänglichkeit
Rechteangabe
© 2023 by the authors

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0