Titel
visClust: A visual clustering algorithm based on orthogonal projections
Abstract
We present a novel clustering algorithm, visClust, that is based on lower dimensional data representations and visual interpretation. Thereto, we design a transformation that allows the data to be represented by a binary integer array enabling the use of image processing methods to select a partition. Qualitative and quantitative analyses measured in accuracy and an adjusted Rand-Index show that the algorithm performs well while requiring low runtime as well and RAM. We compare the results to 6 state-of-the-art algorithms with available code, confirming the quality of visClust by superior performance in most experiments. Moreover, the algorithm asks for just one obligatory input parameter while allowing optimization via optional parameters. The code is made available on GitHub and straightforward to use.
Stichwort
Artificial IntelligenceComputer Vision and Pattern RecognitionSignal ProcessingSoftware
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
phaidra.univie.ac.at/o:2044999
Erschienen in
Titel
Pattern Recognition
Band
148
ISSN
0031-3203
Erscheinungsdatum
2024
Publication
Elsevier BV
Erscheinungsdatum
2024
Zugänglichkeit
Rechteangabe
© 2023 The Author(s)

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0