Titel
Semi-device-independent certification of indefinite causal order in a photonic quantum switch
Autor*in
Autor*in
Jessica Bavaresco
Austrian Academy of Sciences
Autor*in
Ning-Ning Wang
CAS Key Laboratory of Quantum Information, University of Science and Technology of China
... show all
Abstract
Quantum processes are transformations that act on quantum operations. Their study led to the discovery of the phenomenon of indefinite causal order: some quantum processes, such as the quantum switch, act on independent quantum operations in such a way that the order in which the operations are acted upon not only cannot be determined but is simply undefined. This is the property that we experimentally certify in this work. We report an experimental certification of indefinite causal order that relies only on the characterization of the operations of a single party. We do so in the semi-device-independent scenario with the fewest possible assumptions of characterization of the parties’ local operations in which indefinite causal order can be demonstrated with the quantum switch. To achieve this result, we introduce the concept of semi-device-independent causal inequalities and show that the correlations generated in a photonic quantum switch, in which all parties are able to collect local outcome statistics, achieve a violation of this inequality of 224 standard deviations. This result consists of the experimental demonstration of indefinite causal order with the fewest device-characterization assumptions to date.
Stichwort
Atomic and Molecular Physics, and OpticsElectronic, Optical and Magnetic Materials
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
phaidra.univie.ac.at/o:2063721
Erschienen in
Titel
Optica
Band
10
Ausgabe
5
ISSN
2334-2536
Erscheinungsdatum
2023
Publication
Optica Publishing Group
Erscheinungsdatum
2023
Zugänglichkeit

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0