Titel
Synthetic versus distributional lower Ricci curvature bounds
Autor*in
Michael Oberguggenberger
University of Innsbruck, Unit of Engineering Mathematics
Autor*in
James A. Vickers
University of Southampton, School of Mathematics
Abstract
We compare two standard approaches to defining lower Ricci curvature bounds for Riemannian metrics of regularity below C2. These are, on the one hand, the synthetic definition via weak displacement convexity of entropy functionals in the framework of optimal transport, and the distributional one based on non-negativity of the Ricci-tensor in the sense of Schwartz. It turns out that distributional bounds imply entropy bounds for metrics of class C1 and that the converse holds for C1,1-metrics under an additional convergence condition on regularizations of the metric.
Stichwort
low regularityoptimal transportRicci curvature boundssynthetic geometrytensor distributions
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
phaidra.univie.ac.at/o:2067029
Erschienen in
Titel
Proceedings of the Royal Society of Edinburgh: Section A Mathematics
ISSN
0308-2105
Erscheinungsdatum
2023
Seitenanfang
1
Seitenende
25
Publication
Cambridge University Press (CUP)
Erscheinungsdatum
2023
Zugänglichkeit
Rechteangabe
© The Author(s), 2023

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0