Titel
On the distance to low-rank matrices in the maximum norm
Abstract
Every sufficiently big matrix with small spectral norm has a nearby low-rank matrix if the distance is measured in the maximum norm (Udell and Townsend, 2019 [7]). We use the Hanson–Wright inequality to improve the estimate of the distance for matrices with incoherent column and row spaces. In numerical experiments with several classes of matrices we study how well the theoretical upper bound describes the approximation errors achieved with the method of alternating projections.
Stichwort
Low-rank approximationMaximum normJohnson–Lindenstrauss lemmaHanson–Wright inequalityAlternating projections
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
Erschienen in
Titel
Linear Algebra and its Applications
Band
688
ISSN
0024-3795
Erscheinungsdatum
2024
Seitenanfang
44
Seitenende
58
Publication
Elsevier BV
Projekt
Erscheinungsdatum
2024
Zugänglichkeit
Rechteangabe
© 2024 The Author(s)

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0