Titel
Identification of a Synthetic Polyhydroxyphenolic Resveratrol Analogue, 3,3′,4,4′,5,5′-Hexahydroxy-trans-Stilbene with Anti-SARS-CoV-2 Activity
Autor*in
Eva Kicker
Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz
Autor*in
Melina Hardt
Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz
... show all
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus has been causing the COVID-19 pandemic since December 2019, with over 600 million infected persons worldwide and over six million deaths. We investigated the anti-viral effects of polyphenolic green tea ingredients and the synthetic resveratrol analogue 3,3′,4,4′,5,5′-hexahydroxy-trans-stilbene (HHS), a compound with antioxidant, antitumor and anti-HIV properties. In the TCID50 assay, four out of nine green tea constituents showed minor to modest cell protective effects, whereas HHS demonstrated the highest reduction (1103-fold) of the TCID50, indicating pronounced inhibition of virus replication. HHS was also a highly effective inhibitor of SARS-CoV-2 proliferation in VeroE6 cells with an IC50 value of 31.1 µM. HSS also inhibited the binding of the receptor-binding domain (RBD) of the spike protein to the human angiotensin-converting enzyme 2 (ACE2) receptor (RBD-ACE2) binding with 29% at 100 µM and with 9.2% at 50 µM indicating that the SARS-CoV-2 inhibitory effect might at least in part be attributed to the inhibition of virus binding to ACE2. Based on the chemical similarity to other polyphenols, the oral bioavailability of HHS is likely also very low, resulting in blood levels far below the inhibitory concentration of EGCG against SARS-CoV-2 observed in vitro. However, administration of HHS topically as a nose or throat spray would increase concentrations several-fold above the minimal inhibitory concentration (MIC) in the mucosa and might reduce virus load when administered soon after infection. Due to these promising tissue culture results, further preclinical and clinical studies are warranted to develop HHS as an additional treatment option for SARS-CoV-2 infection to complement vaccines, which is and will be the main pillar to combat the COVID-19 pandemic.
Stichwort
polyhydroxyphenolSARS-CoV-2COVID-19antiviral effects
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
phaidra.univie.ac.at/o:2068844
Erschienen in
Titel
Molecules
Band
28
Ausgabe
6
ISSN
1420-3049
Erscheinungsdatum
2023
Publication
MDPI AG
Erscheinungsdatum
2023
Zugänglichkeit
Rechteangabe
© 2023 by the authors

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0