Titel
Facile Thermodynamically Controlled Synthesis of Intermetallic Zn1–xPdx/Al2O3 and Its Methanol Steam Reforming Properties
Autor*in
R. Kriegel
Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology
... show all
Abstract
High-performance heterogeneous catalytic materials are most frequently based on supported nanoparticles to gain high dispersion and thus high atom efficiency. The materials are usually obtained by kinetically controlled synthesis, making repetitive synthesis of materials with identical properties a challenge. While this holds for monometallic-supported particles, the situation is even more severe with binary-supported substitutional alloys or intermetallic compounds, where control of the homogeneous elemental composition of the nanoparticles comes close to an art. We propose an innovative synthesis route to Zn1–xPdx/Al2O3, controlling thermodynamically the composition and homogeneity of the Zn1–xPdx particles─an intermetallic compound having a significant homogeneity range and catalyzing numerous reactions. The thermodynamic control is achieved by the direct reaction of supported palladium nanoparticles with gaseous zinc. The resulting Zn1–xPdx/Al2O3 samples are characterized in detail concerning their particle composition, particle size distribution, and crystal structure of the intermetallic nanoparticles, using XRD, TEM, XPS, ICP-MS and ICP-OES. Subsequent testing in methanol steam reforming reveals excellent catalytic properties.
Stichwort
MaterialsMetal nanoparticlesNanoparticlesPalladiumZinc
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
phaidra.univie.ac.at/o:2085816
Erschienen in
Titel
The Journal of Physical Chemistry C
Band
128
Ausgabe
16
ISSN
1932-7447
Erscheinungsdatum
2024
Seitenanfang
6906
Seitenende
6916
Publication
American Chemical Society (ACS)
Fördergeber
Erscheinungsdatum
2024
Zugänglichkeit
Rechteangabe
© 2024 The Authors

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0