Titel
Efficient nonparametric estimation of Toeplitz covariance matrices
Abstract
A new efficient nonparametric estimator for Toeplitz covariance matrices is proposed. This estimator is based on a data transformation that translates the problem of Toeplitz covariance matrix estimation to the problem of mean estimation in an approximate Gaussian regression. The resulting Toeplitz covariance matrix estimator is positive definite by construction, fully data driven and computationally very fast. Moreover, this estimator is shown to be minimax optimal under the spectral norm for a large class of Toeplitz matrices. These results are readily extended to estimation of inverses of Toeplitz covariance matrices. Also, an alternative version of the Whittle likelihood for the spectral density based on the discrete cosine transform is proposed.
Stichwort
Discrete cosine transformPeriodogramSpectral densityVariance-stabilizing transformWhittle likelihood
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
https://phaidra.univie.ac.at/o:2112575
Erschienen in
Titel
Biometrika
Band
111
Ausgabe
3
ISSN
0006-3444
Erscheinungsdatum
2024
Seitenanfang
843
Seitenende
864
Verlag
Oxford University Press (OUP)
Erscheinungsdatum
2024
Zugänglichkeit
Rechteangabe
© 2024 Biometrika Trust

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0