Titel
Domain Wall Automotion in Three-Dimensional Magnetic Helical Interconnectors
Autor*in
Luka Skoric
Department of Physics, Cavendish Laboratory, University of Cambridge
Autor*in
Claire Donnelly
Department of Physics, Cavendish Laboratory, University of Cambridge
Autor*in
Aurelio Hierro-Rodriguez
SUPA, School of Physics and Astronomy, University of Glasgow
... show all
Abstract
The fundamental limits currently faced by traditional computing devices necessitate the exploration of ways to store, compute, and transmit information going beyond the current CMOS-based technologies. Here, we propose a three-dimensional (3D) magnetic interconnector that exploits geometry-driven automotion of domain walls (DWs), for the transfer of magnetic information between functional magnetic planes. By combining state-of-the-art 3D nanoprinting and standard physical vapor deposition, we prototype 3D helical DW conduits. We observe the automotion of DWs by imaging their magnetic state under different field sequences using X-ray microscopy, observing a robust unidirectional motion of DWs from the bottom to the top of the spirals. From experiments and micromagnetic simulations, we determine that the large thickness gradients present in the structure are the main mechanism for 3D DW automotion. We obtain direct evidence of how this tailorable magnetic energy gradient is imprinted in the devices, and how it competes with pinning effects that are due to local changes in the energy landscape. Our work also predicts how this effect could lead to high DW velocities, reaching the Walker limit during automotion. This work demonstrates a possible mechanism for efficient transfer of magnetic information in three dimensions.
Stichwort
spintronics3D nanofabricationX-ray microscopydomain wallsautomotion
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
Erschienen in
Titel
ACS Nano
Band
16
Ausgabe
6
ISSN
1936-0851
Erscheinungsdatum
2022
Seitenanfang
8860
Seitenende
8868
Publication
American Chemical Society (ACS)
Projekt
Kod / Identifikator
10.55776/I4917
Projekt
Kod / Identifikator
730872
Projekt
Kod / Identifikator
101001290
Erscheinungsdatum
2022
Zugänglichkeit
Rechteangabe
© 2022 The Authors

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0