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Introduction

This text focuses on the representation theory of the Heisenberg group Hn and some
corresponding basic concepts of harmonic analysis on Hn. The Heisenberg group is of
particular interest since it plays an important role in several branches of mathematics
and theoretical physics. It is a nilpotent Lie group and it is the ”simplest” non-compact,
non-commutative example. Consequently, the most important representations in the
context of harmonic analysis, namely the irreducible unitary representations, are no
longer scalar-valued (as in the commutative case) neither finite-dimensional, that is to
say matrix-valued (as in the compact case). In particular, the resulting notion of Fourier
transform on Hn is therefore an operator-valued function acting on the separable Hilbert
space L2(Rn).

The first chapter gives a brief introduction to some basic concepts of representation
theory. As a first step we introduce the notion of strongly continuous one-parameter
groups, which turn out to be a simple example of a Banach space-valued Lie group repre-
sentation. We will see that each of these one-parameter groups possesses an infinitesimal
generator, which in turn induces a notion of smoothness and analyticity of vectors in
the representation space. In that context we meet an instance of Banach space-valued
integration (discussed in Appendix A), which turns out to be one of the technical main
tools throughout this text. We furthermore focus on skew-adjoint operators in Hilbert
space in order to study the special relation between unitary one-parameter groups and
their skew-adjoint infinitesimal generators.

The second part of Chapter 1 is dedicated to general (strongly continuous) Lie
group representations on Banach spaces. After recalling the differences between finite-
dimensional and infinite-dimensional representations, we construct the Haar measure, a
left-invariant Borel measure on the Lie group G, since (vector-valued) integration contin-
ues to be an essential tool for many results. We shall use it, e.g., to show that the family
of left translations form a Lie group representation of G on Lp(G), p ∈ [1,∞), called the
left regular representation of G. It also permits the definition of the integrated repre-
sentation, where an integral over G is used to assign an operator to certain functions on
G. This procedure furthermore leads to the notion of Banach algebra representations,
which we discuss in Appendix B. Finally, we return to the concept of smooth vectors
and show their denseness in the representation space.

The second chapter is the core of this text. We start by constructing the Heisenberg
Lie algebra hn, motivated by the commutation relation from quantum mechanics. Using
the exponential map on hn, we discuss two approaches to the Heisenberg group, which
display slightly different group laws. We then determine the automorphisms of Hn and,
in view of future applications, its center Z.

In the second and major part of this chapter we construct the most important rep-
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INTRODUCTION

resentation of Hn, the so-called Schrödinger representation on L2(Rn). We then make
use of the results from Chapter 1 in order to prove that the Schrödinger representation
is in fact a strongly continuous unitary representation of Hn, generated by an essen-
tially skew-adjoint Lie algebra representation of hn. Subsequently, we learn that the
Schrödinger representation can be parameterized with h ∈ R∗, giving a family of in-
equivalent unitary representations of Hn. Next we turn to the Stone-von Neumann
theorem and the classification of the irreducible unitary representations of Hn. To this
end, we study twisted convolution, a non-commutative convolution product of functions
defined on the quotient Hn/Z ∼= R2n, which preserves the structure of Hn. Using its
compatibility with the integrated Schrödinger representation (restricted to R2n) we de-
rive the technical tools required for proving the Stone-von Neumann theorem. Together
with Schur’s lemma it leads to a classification of the irreducible unitary represenations
of Hn, asserting that each one is unitarily equivalent either to some Schrödinger repre-
sentation of parameter h ∈ R∗ or some one-dimensional representation with values in
S1.

All the results collected that far eventually culminate in the final part of this text,
where we define a Fourier transform for Hn in analogy to the ordinary Fourier transform
on Rn. As a consequence of the Stone-von Neumann theorem the Fourier transform is
either one-dimensional (agreeing with the ordinary Fourier transform) or given by an
operator-valued function acting on L2(Rn). The two main statements of this section are
the Plancherel theorem for the Fourier transform on L2(Hn), which states the existence
of a measure µ that turns the Fourier transform into a unitary isomorphism. The second
statement provides an explicit inversion formula of the Fourier transform for all Schwartz
functions.

Some material on essential concepts used throughout the text is collected in three
appendices.

Appendix A provides a compilation of facts on Bochner integration - one possible
approach to Banach space-valued integration. All definitions and statements are given
in such a way that they are directly applicable to the statements in Chapters 1 and
2 without any further modification. After characterizing the basic notions of Bochner
measurability and Bochner integrability we prove Bochner versions of three fundamental
theorems of integration theory: Fubini’s theorem, the dominated convergence theorem
and the fundamental theorem of calculus. We furthermore show that Bochner inte-
gration interchanges with the application of bounded linear mappings and, under some
assumptions, closed linear mappings as well. Finally, we introduce the natural Bochner
generalization of the Lebesgue spaces Lp to functions with values in some Banach space.

Appendix B gives a brief account on the notion of Banach algebras and their repre-
sentations. Its main purpose is the illustration of the way integrated representations act
on their natural domains, namely convolution algebras of integrable functions.

Last but not least, Appendix C provides some important facts on the spectral theory
of self-adjoint operators in Hilbert space. We present the main aspects of functional
calculus, prove Stone’s theorem, which gives the relation between unitary one-parameter
groups and their infinitesimal generators, and Schur’s lemma.
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1. Some Prerequisites from Lie Group
Representation Theory

In Chapter 1 we introduce some frequently used concepts of infinite-dimensional Lie
group representation theory and show some basic results that will later be used in
Chapter 2 to treat the Heisenberg group. To this end, we first concentrate on strongly
continuous one-parameter groups on R, a quite particular case of representations that
yet possesses a vast field of applications and interesting examples. On our way, we will
encounter a cardinal feature of the theory: Banach space-valued integration, first on R,
and eventually on Lie groups, as we intent to take the step from one-parameter groups
to generic Lie group representations. In general, our focus will noticeably lie on ana-
lytic rather than geometric aspects, mainly motivated by the author’s personal taste.
Appendices A and C provide additional material on integration theory, and on special
one-parameter groups, respectively, which, we hope, will support the interested reader
in deepening his or her understanding.

1.1. One-Parameter Groups of Operators

As mentioned above the treatise of one-parameter groups is a useful first step to get
familiar with some concepts from representation theory due to simplicity of their under-
lying Lie group, R, on the one hand. On the other hand, we try to catch a glimpse of the
vastness of applications, in particular ODE- and PDE-theory, by giving some illustrating
examples.

1.1.1. Definitions and Estimates

Throughout this chapter B will always denote a Banach space, and occasionally we will
use B1, B2, etc. By L(B) we denote the space of all continuous linear maps on B, which
we will always equip with the operator norm defined by

‖A‖ := sup{‖Au‖B | u ∈ B, ‖u‖B ≤ 1}.

Definition 1.1. A strongly continuous one-parameter group of operators on Banach
space B is a map V : R→ L(B) satisfying the following conditions

(i) V (s+ t) = V (s)V (t) ∀s, t ∈ R,

(ii) V (0) = I,

(iii) tj
R−→ t ⇒ V (tj)u

B−→ V (t)u ∀u ∈ B.

3



1. Some Prerequisites from Lie Group Representation Theory

Property (i) is usually referred to as group homomorphism property, (iii) as strong
continuity which motivates the group’s name. Note that it actually suffices to ask for
(iii) for tj → 0 since we can always apply V (−t) to both sides.

Sometimes strong continuity is replaced by an even stronger requirement, namely
convergence in the operator norm. The respective groups are called norm continuous
groups. Note that one-parameter groups are often defined as semi-groups on [0,∞) to
better suit the applications. Some initial value problems such as, e.g., the heat equation
cannot be solved for negative time in general, thus it is important to provide a more
general concept. However, our main goal will be the extension to general Lie groups,
hence it is more convenient and comprehensible to introduce the concept as we have
done.

Example 1.2. Our main example throughout this section (and even later in more gen-
eral form) will be the family of translations on Lp(R), 1 ≤ p <∞. We will see that this
group is essentially connected to the notions of strong and weak differentiability. For
1 ≤ p ≤ ∞, we define the translations by

τp(t) : Lp(R)→ Lp(R),
f(.) 7→ f( .− t).

Properties (i) and (ii) of Definition 1.1 are immediate. Note that τp(t) is even an
isometry since the Lebesgue integral over R is invariant under translations. In order to
prove (iii) in case 1 ≤ p <∞, we are going to use a standard density argument. To this
end, recall that the space of compactly supported smooth functions C∞c (R) is dense in
Lp(R) (cf. Werner [22], Lemma V. 1. 10). Hence, for arbitrary ε > 0 and f ∈ Lp(R) there
exists some ϕ ∈ C∞c (R) such that ‖f − ϕ‖Lp < ε/3. The invariance of the Lebesgue
integral under translations gives ‖τp(s)f − τp(s)ϕ‖Lp = ‖f − ϕ‖Lp for all s ∈ R. So, we
are done since uniform continuity of ϕ yields the following estimate for small |tj − t|:

‖τp(tj)f − τp(t)f‖Lp ≤ ‖τp(tj)f − τp(tj)ϕ‖Lp + ‖τp(tj)ϕ− τp(t)ϕ‖Lp

+ ‖τp(t)ϕ− τp(t)f‖Lp < 3
ε

3
= ε. (1.1)

Some more attention will be needed in the case of a Lie group replacing R to derive
convergence of the middle term from uniform continuity of ϕ.

The case p =∞ is indeed an exception: Considering the characteristic functions χ[0,h]

and χ[0,h′] for h, h′ > 0, we see that
∥∥χ[0,h] − χ[0,h′]

∥∥
L∞(R)

= 1 whenever h 6= h′. From
this it follows that τ∞ is not strongly continuous on R.

Example 1.3. Another very instructive example is the exponential of an operator A ∈
L(B) on a Banach space B, which is defined by

V (t) := etA :=
∞∑
n=0

1
n!
tnAn.

Since this series is absolutely convergent in L(B) we obtain V (t) ∈ L(B) for all t ∈ R.
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1. Some Prerequisites from Lie Group Representation Theory

The homomorphism property is shown as in the scalar case, while (ii) is immediate.
Finally, we even have norm-convergence in (iii), since

‖V (t)− I‖ =

∥∥∥∥∥
∞∑
n=1

tnAn

n!

∥∥∥∥∥ ≤
∞∑
n=1

‖A‖n tn

n!
= et‖A‖ − 1→ 0 (t→ 0).

Remark 1.4. A generalization of this example to the case of unbounded operators -
which of course requires some more theoretical background - will be given in App. C.

The following proposition provides some useful estimates for establishing a series of
technical results on strongly continuous one-parameter groups.

Proposition 1.5. Let V be a strongly continuous one-parameter group. Then there exist
some M,K ∈ R+, e.g., K = logM , such that

(i) ‖V (t)‖ ≤M for all t ∈ [−1, 1],

(ii) ‖V (t)‖ ≤MeK|t| for all t ∈ R.

Proof. We will prove the local uniform bound by means of the Banach-Steinhaus The-
orem, which states that if a family F ⊆ L(E) of bounded operators on a Banach space
E satisfies supT∈F ‖Tu‖ <∞ for all u ∈ E, then even supT∈F ‖T‖ <∞ holds true.

The subfamily F := {V (t) | t ∈ [−1, 1]} ⊆ {V (t) | t ∈ R} has indeed the above
property: note that for every fixed u ∈ B the map t 7→ ‖V (t)u‖ is continuous on [−1, 1]
due to strong continuity of V . Compactness of the interval yields the existence of some
bound Mu ∈ R+ with ‖V (t)u‖ ≤Mu for all t ∈ [−1, 1]. Hence by the Banach-Steinhaus
Theorem, there exists a uniform bound for F .

The rest of the proof concerns the second estimate given above. For t ∈ (n, n+ 1] and
n ∈ N we obtain by (i)

‖V (t)‖ ≤ ‖V (t− n)‖ · ‖V (n)‖ ≤ Mn+1 ≤ M |t|+1 ≤ MeK|t|,

which proves the statement for all t ∈ (−1, n + 1]. Since n ∈ N was arbitrary the
estimate holds for all t ∈ [−1,∞). An analogous calculation yields the above also for
t ∈ (−∞,−1], hence for all t ∈ R.

Definition 1.6. Let V be a strongly continuous one-parameter group. Motivated by
Proposition 1.5, we define the growth bound of V to be the constant

K0 := inf{K ∈ R+ | ∃M = M(K) ∈ R+ s.t. ‖V (t)‖ ≤MeK|t| ∀t ∈ R}.

1.1.2. The Infinitesimal Generator

To every strongly continuous one-parameter group V on a Banach space B we can
associate a ”generating element”, the so-called infinitesimal generator. It turns out to
be a linear usually unbounded operator with closed graph defined on a dense subset of
B.
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1. Some Prerequisites from Lie Group Representation Theory

Definition 1.7. Let V be a strongly continuous one-parameter group on a Banach space
B. We define its infinitesimal generator by

Au := lim
h→0

1
h

(V (h)u− u) ∀u ∈ D(A),

on its natural domain

D(A) := {u ∈ B | ∃ lim
h→0

1
h

(V (h)u− u)}.

Let us illustrate this definition by discussing some examples.

Example 1.8. In analogy to the one-parameter group of translations on Lp(R) from
Example 1.2, we now define translations on the space of all continuous functions that
vanish at infinity, denoted by C0(R). Note that this space is a Banach space with respect
to uniform convergence. Denoting the translations by τ(t), t ∈ R, we omit the index p
since we do not refer to any Lp(R)-space in this case. Now, an informal calculation will
give us an idea of how the infinitesimal generator acts on the space C0(R):

lim
h→0

1
h

(τ(t)f(t)− f(t)) = lim
h→0

f(t− h)− f(t)
h

= −df
dt

(t) (1.2)

Thus, we are inclined to identify the infinitesimal generator A as the differential operator
− d
dt : f 7→ −f ′. In order to check this, we localize the generator’s domain.

Proposition 1.9. Let τ be the family of translations acting on the Banach space
(C0(R), ‖ . ‖∞). Then its infinitesimal generator is given by

A = − d

dt
,

D(A) = {f ∈ C0(R) | ∃f ′ ∈ C0(R)}.

Proof. Let f ∈ C0(R) be differentiable with f ′ ∈ C0(R) and t ∈ R arbitrary. Then due
to continuity of f ′∣∣∣∣f(t− h)− f(t)

h
+ f ′(t)

∣∣∣∣ =
∣∣∣∣1h
∫ t−h

t
f ′(s) ds+ f ′(t)

∣∣∣∣
≤ 1
h

∫ t−h

t
|f ′(s)− f ′(t)| ds → 0,

as h→ 0. Hence, f ∈ D(A), and Af = − d
dt f .

Conversely, let f ∈ D(A). Then by (1.2) f ′ exists, and by definition it is in C0(R).

Example 1.10. Returning to the one-parameter group V := t 7→ etA with A ∈ L(B)
(cf. Example 1.3), it seems it seems quite sensible to suppose that its generator is A. In
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1. Some Prerequisites from Lie Group Representation Theory

fact, a short calculation justifies our anticipation∥∥∥∥1
h

(V (h)− V (0))−A
∥∥∥∥ =

∥∥∥∥ehA − Ih
−A

∥∥∥∥ ≤ ∞∑
n=2

hn−1 ‖An‖
n!

≤ h ‖A‖2 eh‖A‖ → 0,

as h → 0. As in Example 1.3 we even have convergence in the operator norm, and
completeness of L(B) yields A ∈ L(B). Hence, the infinitesimal generator is A and
D(A) = B.

Of course, boundedness of the infinitesimal generator lies at the heart of the above
example: Indeed it implies uniform continuity rather than mere strong continuity.

Definition 1.11. Let B1 and B2 be Banach spaces and A : B1 → B2 be linear with
domain D(A). We say A is closed if and only if its graph G(A) := {(u,Au) | u ∈ D(A)}
is closed in B1 ×B2 with respect to the norm (u, v) 7→ ‖u‖B1

+ ‖v‖B2
.

Equivalently, A is closed if and only if the existence of un ∈ D(A), n ∈ N, with
un → u ∈ B1 and Aun → v ∈ B2, implies u ∈ D(A) and v = Au.

A very nice introduction of this notion is given in Werner, [22], IV.4, where it is
compared in detail to the familiar concept of continuity.

The following theorem lists the main properties of the infinitesimal generator. It in-
volves closed operators as well as their spectra (cf. Definition 1.12), and a few results
about Banach space-valued integration. As a matter of fact, there are various ways to
define such an integral, and we choose the most convenient one in view of its applica-
tions, namely the Bochner integral. It is, in fact, a straightforward generalization of
Lebesgue integration modifying the functions’ range space, yet it does not share all of
its properties. Thus, we should be careful not to just view it as the Lebesgue integral
with absolute value signs replaced by norm signs. We have collected all the relevant
facts to be used below in App. A and we will frequently refer to it. Nevertheless, we
mention here three important arguments: First the Fundamental Theorem of Calculus
says in analogy to the real-valued case that limh→0

1
h

∫ t+h
t u(s) ds = u(t) if u ∈ C(R, B)

(cf. Theorem A.15). Another important property is the fact that the integral inter-
changes with bounded operators, i.e., T

(∫ b
a u(s) ds

)
=
∫ b
a Tu(s) ds for all T ∈ L(B1, B2)

and all Bochner integrable B1-valued functions u (cf. Proposition A.10). Last but not
least, we will use an adopted version of Lebesgue’s Dominated Convergence Theorem
(cf. Proposition A.14).

Our final preparation concerns the spectrum of an operator.

Definition 1.12. Let A : B → B be a densely defined operator on a Banach space B.
The set

ρ(A) := {λ ∈ C | λ−A is bijective, (λ−A)−1 ∈ L(B)}

is called the resolvent set of A. On the latter we define the resolvent of A to be the

7



1. Some Prerequisites from Lie Group Representation Theory

operator-valued function

RA : ρ(A) → L(B)

z 7→ (z −A)−1,

and we call σ(A) := C \ ρ(A) the spectrum of A.

Remark 1.13. (i) The set of all eigenvalues of A is evidently a subset of σ(A).
(ii) Every densely defined operator A with ρ(A) 6= ∅ turns out to be closed

(cf. Werner [22], Exer. VII 5. 32). Hence, if A is not closed, then σ(A) = C.
(iii) If A is a densely defined, closed operator and λ− A is bijective for some λ ∈ C,

then by the closed graph theorem (λ−A)−1 is automatically continuous.

Theorem 1.14. If V is a strongly continuous one-parameter group with infinitesimal
generator A, then the following hold

(i) A is closed.

(ii) D(A) is a dense subset of B.

(iii) V (t)D(A) ⊆ D(A) for all t ∈ R.

(iv) V (t)Au = AV (t)u = d
dtV (t)u for all u ∈ D(A).

(v)
∫ t

0 V (s)u ds ∈ D(A) for all u ∈ B and all t > 0, and A
(∫ t

0 V (s)u ds
)

= V (t)u−u.

(vi)
∫ t

0 V (s)Auds = V (t)u− u for all u ∈ D(A).

(vii) {λ | Re (λ) > K0} ⊆ ρ(A), K0 being the growth bound of V (cf. Definition 1.6).

(viii) (λ−A)−1u =
∫∞

0 e−λtV (t)u dt for all u ∈ B, λ ∈ {λ | Re (λ) > K0}.

Proof. (iii), (iv) Let u ∈ D(A), t ∈ R. Then we have

1
h

(V (h)V (t)u− V (t)u) = V (t)
1
h

(V (h)u− u).

We obtain V (t)u ∈ D(A) by continuity of V (t) and the fact that 1/h(V (t)u−u)→ Au ∈
B (h→ 0) by Definition 1.7. Moreover, we have

1
h

(V (t+ h)u− V (t)u) = V (t)
1
h

(V (h)u− u)→ V (t)Au,

as h→ 0, hence d
dtV (t)u = V (t)Au. Similarly, by (iii) and Definition 1.7

1
h

(V (t+ h)u− V (t)u) =
1
h

(V (h)V (t)u− V (t)u)→ AV (t)u,

so we obtain the second formula in (iv).

8



1. Some Prerequisites from Lie Group Representation Theory

In order to prove (v), note to begin with that due to strong continuity the map
t 7→ V (t)u ∈ C(R, B) for any fixed u ∈ B. Furthermore, we use the first two of the
above mentioned facts on Banach space-valued integration to obtain (assuming w.l.o.g.
h ≤ t)

1
h

(
V (h)

∫ t

0
V (s)u ds−

∫ t

0
V (s)u ds

)
=

1
h

∫ t

0
V (h)V (s)︸ ︷︷ ︸
V (h+s)

u ds−
∫ t

0
V (s)u ds


=

1
h

(∫ h+t

h
V (s)u ds−

∫ t

0
V (s)u ds

)
=

1
h

(∫ t+h

t
V (s)u ds−

∫ h

0
V (s)u ds

)
→ V (t)u− V (0)u = V (t)u− u,

as h→ 0. Thus,
∫ t

0 V (s)u ds ∈ D(A), and

A

(∫ t

0
V (s)u ds

)
= V (t)u− u

holds true for all t > 0.
(vi) By (v) we obtain for u ∈ D(A)

V (t)u− u = A

∫ t

0
V (s)u ds

= lim
h→0

1
h

(
V (h)

∫ t

0
V (s)u ds−

∫ t

0
V (s)u ds

)
= lim

h→0

∫ t

0
V (s)

(
V (h)u− u

h

)
ds.

The functions s 7→ V (s)
(
V (h)u−u

h

)
are continuous, thus Bochner-measurable, for fixed h

on the interval [0, t] (cf. Proposition A.5). The mapping h 7→ 1/h(V (h)u−u) is bounded
in B if h ∈ [0, h0] for some h0 > 0, since V (h)u−u

h → Au for u ∈ D(A) as h → 0.

Moreover, ‖V (s)‖ ≤MeK0t for s ≤ t, hence, s 7→ V (s)
(
V (h)u−u

h

)
is uniformly bounded

in h ∈ [0, h0], thus locally in L1(R, B), with pointwise limit s 7→ V (s)Au, as h→ 0. By
Theorem A.14, we may interchange limit and integral to obtain

V (t)u− u =
∫ t

0
V (s)Auds.

(ii) Note that ut := 1
t

∫ t
0 V (s)u ds ∈ D(A) by (v), and by Theorem A.15 we have

ut → u, as t→ 0. Thus, D(A) = B.
In order to prove (i), consider a sequence (un)n in D(A) with un → u ∈ B and

9
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Aun → v ∈ B. Then using (v) we have

V (h)u− u
h

= lim
n→∞

V (h)un − un
h

= lim
n→∞

1
h

∫ h

0
V (s)Aun ds.

As in the proof of (iv), s 7→ V (s)Aun is uniformly bounded for s ∈ [0, h], thus locally
in L1(R, B), with pointwise limit s 7→ V (s)v. Hence, we may apply Theorem A.14 to
obtain

V (h)u− u
h

=
1
h

∫ h

0
V (s)v ds → v,

as h→ 0. Convergence in h is now due to Theorem A.15. Thus u ∈ D(A) and Au = v.
(vii), (viii) Finally, consider the one-parameter group e−λtV (t) with infinitesimal

generator A− λ and D(A− λ) = D(A). Then by (v) and (vi) we obtain

e−λtV (t)u− u =


(A− λ)

∫ t

0
e−λsV (s)u ds ∀u ∈ B∫ t

0
e−λsV (s)(A− λ)u ds ∀u ∈ D(A).

Let Re (λ) > K0 ≥ 0 (the growth bound of V , cf. Definition 1.6), and let t→∞. Then
from the above we conclude

u =


(λ−A)

∫ ∞
0

e−λsV (s)u ds ∀u ∈ B∫ ∞
0

e−λsV (s)(λ−A)u ds ∀u ∈ D(A),

since by Theorem 1.5,
∣∣e−λtV (t)

∣∣ ≤ eRe(−λ)t eK0tM → 0, as t→∞. Hence, the operator
λ−A : D(A)→ B is bijective, and λ ∈ ρ(A). This proves (vii) and (viii).

As it is our aim to discuss differential equations on Lie groups (especially the Heisen-
berg group), we will start on R with the solution of an abstract Cauchy problem for a
Banach space-valued continuously differentiable function u and a linear operator A on
B:

u′ = Au, u(0) = u0. (1.3)

Theorem 1.14 provides everything we need to solve (1.3) as we prove next.

Theorem 1.15. Let V be a strongly continuous one-parameter group on a Banach space
B with infinitesimal generator A. Furthermore, let u0 ∈ D(A), the domain of A. Then
the function u : R→ B, u(t) := V (t)u0 is C1, D(A)-valued and a solution of the Cauchy
problem (1.3). Moreover, u is the unique solution and u(t) depends continuously on u0.

Proof. By Theorem 1.14 (iii) V (t)u0 ∈ D(A), hence Au(t) is defined. Moreover, we
already proved differentiability and explicitly showed that u′ = AV (t)u0 = V (t)Au0.

10



1. Some Prerequisites from Lie Group Representation Theory

Thus, u(t) is a solution of (1.3). Furthermore, this proves continuity of u′. Let v be
another solution of (1.3). Then, the product rule of differentiation for Banach space-
valued functions (cf. Kriegl [14], Folgerung 6. 1. 13) yields for t ∈ (−∞, s] using Theorem
1.14 (iv)

d

dt
V (s− t)v(t) = (−1)AV (s− t)v(t) + V (s− t)v′(t)

= −V (s− t)Av(t) + V (s− t)Av(t) = 0.

To prove that F : (−∞, s]→ B, F (t) := V (s− t)v(t) is constant, let w ∈ B∗, then

d

dt
〈w,F (t)〉 =

〈
w,

d

dt
F (t)

〉
= 0,

(cf. Kriegl [14], Folgerung 6. 1. 10). Thus 〈w,F (0)〉 = 〈w,F (t)〉 for all t ∈ (−∞, s], in
particular for t = s. Hence, by the Hahn-Banach theorem F (0) = F (s), i.e., V (s)u0 =
v(s). Since s was arbitrary, uniqueness is proved.

The continuous dependence of u(t) on u0 is due to continuity of the operators V (t).

There exists a very interesting application of Theorem 1.15 proving that every strongly
continuous one-parameter group is uniquely determined by its infinitesimal generator.

Proposition 1.16. Let V and W be strongly continuous one-parameter groups on a
Banach space B with the same infinitesimal generator A, then V (t) = W (t) for all
t ∈ R.

Proof. Let u ∈ D(A). Both t 7→ V (t)u and t 7→W (t)u are solutions of the i.v.p.

u′ = Au(t), u(0) = u ∈ D(A).

Since its solution is unique by Theorem 1.15, we obtain V (t)|D(A) = W (t)|D(A) for
all t ∈ R. Now, continuity of each V (t) and each W (t) and denseness of D(A) in B
(cf. Theorem 1.14 (ii)) give V (t) = W (t) for all t ∈ R.

We conclude this subsection with another example. More precisely, we will determine
the infinitesimal generator Ap of the strongly continuous one-parameter group of trans-
lations on Lp(R), 1 ≤ p <∞, denoted by τp. Recall that we already found the latter in
case we restricted the translations to the space C0(R). It turned out to be the ordinary
differential operator − d

dx (for more details see Example 1.8). In the following we will
see that the Lp(R)-case requires some more effort, and a few basics about generalized
functions. To begin with, note that for f ∈ Lp(R) we cannot simply consider the dif-
ference quotient h−1(f(t − h) − f(t)) for fixed t ∈ R. Hence, applying the conditions
of Definition 1.7 to the present case, we find u ∈ Lp(R) is an element of D(Ap) if and
only if limh→0 h

−1(u(. − h) − f(.)) exists in the Lp-norm. As we will see the operator
Ap is nothing but the distributional derivation − d

dx with derivatives in Lp(R), usually
referred to as the Sobolev space W 1,p(R). Note that there is an equivalent description of
W 1,p(R) involving weak derivatives of Lp(R)-functions, and that equality of these spaces

11
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can easily be shown for the case p = 2 using Fourier techniques (cf. Weidmann [21],
Theorem 10.8, Theorem 10.9).

Proposition 1.17. Denote by τp the one-parameter group of translations on Lp(R), 1 ≤
p <∞, and by Ap its infinitesimal generator. Then

Ap = − d

dx
,

D(Ap) = W 1,p(R) := {u ∈ Lp(R) | du
dx
∈ Lp(R)}

where d
dx denotes the distributional derivative.

Proof. (⊆) The condition u ∈ D(Ap) is equivalent to the existence of some v ∈ Lp(R)
s.t.

lim
h→0

∥∥∥∥u(.− h)− u
h

− v
∥∥∥∥
Lp

= 0.

Let ϕ ∈ C∞c (R) and denote by 〈. , .〉 the distributional action. Then∣∣∣∣〈− d

dx
u, ϕ

〉
− 〈v, ϕ〉

∣∣∣∣ =
∣∣∣∣〈u, ddxϕ

〉
− 〈v, ϕ〉

∣∣∣∣ = lim
h→0

∣∣∣∣〈u, ϕ(.+ h)− ϕ
h

〉
− 〈v, ϕ〉

∣∣∣∣
(1.4)

= lim
h→0

∣∣∣∣〈u(.− h)− u
h

− v, ϕ
〉∣∣∣∣ ≤ lim

h→0

∥∥∥∥u(.− h)− u
h

− v
∥∥∥∥
Lp
‖ϕ‖Lq

= 0.

The second equality in (1.4) is due to fact that h−1(ϕ(. + h) − ϕ) → ϕ′ in C∞c (R),
which follows from an elementary calculation using the mean value theorem. Since ϕ
was arbitrary, we have du

dx = v ∈ Lp(R).
(⊇) The converse inclusion is due to the following lemma, where we use the fact that

C∞c (R) is weak*-dense in Lq(R), (1 < q ≤ ∞), the dual space of Lp(R), (1 ≤ p < ∞),
and invariance of C∞c (R) under the family of translations τq. In fact, weak*-denseness
follows from (norm) denseness of C∞c (R) in Lq(R), (1 < q < ∞), while in case q = ∞
one can argue, e.g., as follows: For given f ∈ L∞(R) take a standard mollifier ρn and
consider fn := (f ∗ ρn)χBn(0), where χBn(0) is a smooth cut-off around the ball Bn(0).
Indeed fn ∈ C∞c (R), ‖fn‖L∞ ≤ C <∞, and

∫
R g(t)(fn− f)(t) dt→ 0 for all g ∈ C∞c (R),

which establishes the result due to Yosida [23], Theorem V. 10.

Lemma 1.18. Let V be a one-parameter group on some Banach space B and A its
infinitesimal generator. Furthermore, let L be a weak*-dense linear subspace of B∗,
which is invariant under the adjoint maps V (t)∗ for all t ∈ R. Now, given u, v ∈ B such
that

lim
h→0

1
h
〈w, V (h)u− u〉 = 〈w, v〉 (1.5)

12
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for all w ∈ L, then u ∈ D(A), and Au = v.

Proof. Equation (1.5) implies differentiability of t 7→ 〈w, V (t)u〉 : R→ C at t = 0. Now
fix any t 6= 0, then we have

1
h

(〈w, V (t+ h)u〉 − 〈w, V (t)u〉) =
1
h
〈V (t)∗w, V (h)u− u〉 → 〈V (t)∗w, v〉 = 〈w, V (t)v〉 ,

as h → 0, thus differentiability for t ∈ R. An application of the fundamental theorem
of calculus to the real and complex parts of t 7→ 〈w, V (t)u〉 together with the fact that
the Bochner integral interchanges with linear bounded maps (cf. Proposition A.10) then
gives

〈w, V (t)u〉 =
∫ t

0
〈w, V (s)v〉 ds+ 〈w, V (0)u〉 ⇔

〈w, V (t)u− u〉 =
〈
w,

∫ t

0
V (s)v ds

〉
.

Weak*-denseness of L yields V (t)u−u =
∫ t

0 V (s)v ds in B. Hence, by Theorem A.15 we
conclude limh→0

1
h (V (h)u− u) = limh→0

1
h

∫ h
0 V (s)v ds = v.

1.1.3. Unitary One-Parameter Groups

Since we aim at an indepth discussion of representations of the Heisenberg group in
Chapter 2 we now collect some results on unitary one-parameter groups on Hilbert spaces
and their generators. To begin with, we recall the notions of self- and skew-adjointness.
By H we will always denote a complex Hilbert space.

Definition 1.19. (i) Let U ∈ L(H) for some Hilbert space H. Then U is said to be
unitary if U∗ = U−1.

(ii) A strongly continuous one-parameter group U is called a unitary group if U(t) is
unitary for all t ∈ R.

Definition 1.20. For a densely defined linear operator A on a Hilbert space H, we
define the domain of its adjoint A∗ by

D(A∗) = {u ∈ H | ∃C > 0 s.t. v 7→ |〈u,Av〉| ≤ C ∀v ∈ D(A)},

and the operator’s action by

〈A∗u, v〉 := 〈u,Av〉 .

Remark 1.21. The definition is sensible since by the Hahn-Banach theorem the
bounded conjugate linear functional v 7→ |〈u,Av〉| defined on the dense subspace D(A)
of H extends to a bounded conjugate linear functional f on H. Then by the theorem of
Riez-Fréchet there exists a unique w ∈ H such that f(v) = 〈w, v〉 for all v ∈ H. Hence,

13
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for u ∈ D(A∗) we obtain 〈u,Av〉 = 〈w, v〉 for all v ∈ D(A), and we may unambiguously
set A∗u := w.

Next we may define the major classes of operators on Hilbert spaces.

Definition 1.22. Let A be a densely defined linear operator on some Hilbert space H.
We say A is symmetric if

D(A) ⊆ D(A∗) and A∗u = Au ∀u ∈ D(A),

respectively skew-symmetric if

D(A) ⊆ D(A∗) and A∗u = −Au ∀u ∈ D(A).

Furthermore, an operator A is called self-adjoint if it is symmetric and D(A) = D(A∗).
A is called skew-adjoint if it is skew-symmetric and D(A) = D(A∗).

Remark 1.23. Whenever there exists an extension T of some linear operator A : H ⊇
D(A) → H we will use the notation A ⊆ T . Thus, will write, e.g., A ⊆ A∗ if A
symmetric.

Remark 1.24. In case that A is a bounded operator we have D(A) = H = D(A∗), and
A∗ agrees with usual notion for self-adjointness for bounded operators. Furthermore, it
is easily seen that a linear operator A is self-adjoint if and only if iA is skew-adjoint.

The next theorem will be a characterization of self-adjoint operators, but first we need
some technical preparations.

Lemma 1.25. Let A be a densely defined operator on a Hilbert space H. Then following
hold:

(i) ker(A∗ ∓ i) = ran(A± i)⊥

(ii) If A is symmetric, then A± i are injective.

(iii) If A is symmetric and closed, then A± i are also closed with closed range.

Proof. (i) (⊇) Let v ∈ ran(A+ i)⊥ and u ∈ D(A). It follows that 〈(A+ i)u, v〉 = 0, hence
v ∈ D(A∗) by Def.1.20, and 〈u, (A∗ − i)v〉 = 0 for all u ∈ D(A). Hence, v ∈ ker(A∗ − i)
D(A) is dense.

(⊆) The converse inclusion follows by reading the same argument the other way round:
For v ∈ ker(A∗ − i) and u ∈ D(A) we have 0 = 〈u, (A∗ − i)v〉 = 〈(A+ i)u, v〉, hence
v ∈ ran(A− i)⊥.

The same arguments hold for A∗ + i and A− i.
(ii) For u ∈ D(A) we have

‖Ax‖2 ± 2 Re (〈Ax, ix〉) + ‖ix‖2 = 〈(A± i)x, (A± i)x〉 = 〈(A∓ i)x, (A∓ i)x〉
= ‖Ax‖2 ∓ 2 Re (〈Ax, ix〉) + ‖−ix‖2.
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Hence by symmetry of A

‖(A± i)x‖2 = ‖(A∓ i)x‖2 = ‖Ax‖2 + ‖x‖2 ≥ ‖x‖2, (1.6)

thus (A± i) is injective.
(iii) By (ii), (A + i)−1 : ran(A + i) → D(A) exists and is continuous. Let now

un ∈ D(A) such that (A + i)un → v ∈ ran(A+ i). Hence, it is a Cauchy sequence in
ran(A + i), and due to (1.6) un is a Cauchy sequence in D(A), thus converges to some
u ∈ H. Furthermore, we have Aun → v−iu, but since A is closed, it follows Au = v−iu.
Hence Au + iu = v ∈ ran(A + i), thus A + i is closed and its range, too. Analogously,
one proves the case A− i.

The following corollary is a special case of Lemma 1.25 (i).

Corollary 1.26. For any densely defined operator A on H we have

ker(A∗ ∓ i) = {0} ⇔ ran(A± i) dense in H .

Theorem 1.27 (J. von Neumann). Let A be a symmetric operator on a Hilbert space
H. Then the following are equivalent:

(i) A is self-adjoint

(ii) A is closed and ker(A∗ ± i) = {0}

(iii) ran(A± i) = H

(iv) ±i ∈ ρ(A)

In this case, the operators

U1 := (A+ i)(A− i)−1, U2 := (A− i)(A+ i)−1

are unitary.

Proof. (i) ⇒ (ii) First we show that A is closed. To this end, let vn ∈ D(A) s.t.
vn → v ∈ H and Avn → w ∈ H. Then we have

〈Au, v〉 = lim
n→∞

〈Au, vn〉 = lim
n→∞

〈u,Avn〉 = 〈u,w〉

for all u ∈ D(A). Hence v ∈ D(A∗) = D(A) and Av = w, thus A is closed.
Now suppose u ∈ ker(A∗ ± i). By (1.6) we have ‖Au‖2 + ‖u‖2 = ‖(A± i)u‖2 = 0,

hence u = 0.
(ii)⇒ (iii) follows by Lemma 1.25.
(iii)⇒ (i) Recalling that A ⊆ A∗ we only have to show D(A∗) ⊆ D(A). Hence, let v ∈
D(A∗). Since ran(A−i) = H, there exists some u ∈ D(A) such that (A∗−i)v = (A−i)u,
but A ⊆ A∗ gives (A∗ − i)v = (A∗ − i)u. Hence v − u ∈ ker(A∗ ± i) = ran(A ∓ i)⊥ =
H⊥ = {0} by Lemma 1.25 (i), thus v = u ∈ D(A).
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(i), (ii), (iii) ⇔ (iv) Since A ± i is injective and ran(A ± i) = H we have ±i ∈ ρ(A).
Conversely (iv) clearly implies (iii).

Finally, we show unitarity of U1, skipping the analogous proof for U2. Thus, let
u, v ∈ H be arbitrary. Then we have

〈U1u, U1v〉 =
〈
(A− i)(A+ i)(A− i)−1u, (A− i)−1v

〉
=
〈
(A+ i)(A− i)(A− i)−1u, (A− i)−1v

〉
=
〈
(A+ i)u, (A− i)−1v

〉
=
〈
u, (A− i)(A− i)−1v

〉
= 〈u, v〉 ,

hence U1 is unitary which concludes the proof.

Next we are going to employ the above theorem to characterize the relation between
skew-adjoint operators and unitary one-parameter groups.

Theorem 1.28. If U is a strongly continuous unitary one-parameter group on a Hilbert
space H, then its infinitesimal generator A is skew-adjoint.

Proof. U(t) being unitary is equivalent to U(t)∗ = U(t)−1 = U(−t). So, let u, v ∈ D(A),
then

1
h
〈U(t)u− u, v〉 =

1
h
〈u, (U(h)− I)∗v〉 =

1
h
〈u, U(−h)v − v〉 → 〈u,−Av〉 ,

as h → 0. Hence, A is skew-symmetric, and it is also closed being the infinitesimal
generator of a one-parameter group by Theorem 1.14 (i). Since every unitary operator
on H is an isometry, i.e., ‖U(t)‖ = 1 for all t ∈ R, we can use estimate (ii) from
Proposition 1.5, with M = 1 and K = 0. Then growth bound K0 vanishes, and Theorem
1.14 gives ±1 ∈ ρ(A). Hence, iA is symmetric (cf. Remark 1.24) with ±i ∈ ρ(iA), hence
self-adjoint by Theorem 1.27. If follows that A is skew-adjoint, and we are done.

Remark 1.29. The converse of Theorem 1.28 is also true but requires some more prepa-
ration. In the light of Example 1.3 it seems reasonable that the group U can be recon-
structed from its infinitesimal generator via

U(t) = etA.

To make this statement precise, however, spectral theory of unbounded operators has
to be used to define the exponential etA. In fact, we are going to prove this statement
known as Stone’s Theorem in App. C. We will furthermore see that for any unitary
skew-adjoint operator A, t 7→ etA defines a strongly continuous unitary one-parameter
group with infinitesimal generator A. Here we will just deal with the simpler analogue
for bounded operators.

Proposition 1.30. Let A be a linear bounded and skew-adjoint operator on a Hilbert
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space H. Then the family of operators U(t) defined by

U(t) := etA :=
∞∑
n=0

1
n!
tnAn (1.7)

is a strongly continuous unitary one-parameter group with infinitesimal generator A.

Proof. As we know that U is a strongly continuous one-parameter group (cf. Ex.1.3)
with infinitesimal generator A (cf. Example 1.10), we now show unitarity. For u, v ∈ H
we have

〈u, U(t)v〉 =

〈
u,

∞∑
n=0

1
n!
tnAnv

〉
=

∞∑
n=0

1
n!
tn 〈u,Anv〉 =

∞∑
n=0

1
n!

(−1)ntn 〈Anu, v〉

=
〈
e−tAu, v

〉
= 〈U(−t)u, v〉 =

〈
U(t)−1u, v

〉
,

which holds true for all t ∈ R, hence the proof is complete.

1.1.4. Smooth and Analytic Vectors

So far we have derived several important properties of strongly continuous one-parameter
groups. Inspired by continuous differentiability of the B-valued functions Fu : R →
B, Fu(t) := V (t)u for u ∈ D(A) (cf. Theorem 1.15), we now focus on iterated differen-
tiation and smoothness. Note that a priori it is not clear for which u ∈ B, Fu might be
Ck since it is not even C1 for u /∈ D(A). On the other hand, Example 1.10 illustrates
that boundedness of the generator A implies smoothness for all Fu and also smoothness
in the operator norm of t 7→ Fu(t). Therefore, it seems reasonable to suppose that k-fold
differentiability is intimately related to the infinitesimal generator.

Definition 1.31. Let V be a strongly continuous one-parameter group on the Banach
space B and u ∈ B. We say that u is a smooth vector for V if Fu is a smooth function.

The following result gives a characterization of k-fold differentiability and smooth
vectors.

Proposition 1.32. Let V be a strongly continuous one-parameter group. Then Fu : t 7→
Fu(t) : R→ B is Ck (C∞) if and only if u ∈ D(Ak) (for all k ∈ N), and we have

dkFu
dtk

= V (t)Aku. (1.8)

Proof. If Fu is k times continuously differentiable, then differentiability at t = 0 gives
existence of limh→0(Fu(h)−F (0)) in B, and the limit is equal to limh→0(V (h)u−u) = Au.
Hence, u ∈ D(A), and by Theorem 1.14 (iv) we have d

dtV (t)u = V (t)Au = AV (t)u.
Moreover, we observe that d2

dt2
|0V (t)u = d

dt |0V (t)Au. Thus, limh→0(V (h)Au−Au) exists
in B, which implies Au ∈ D(A), and therefore u ∈ D(A2). As in the proof of Theorem
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1.14 (iv) it follows that d2

dt2
V (t)u = V (t)A2u. Proceeding inductively, we conclude that

u ∈ D(Ak) and dk

dtk
V (t)u = V (t)Aku.

Conversely, if u ∈ D(Ak), then of course u ∈ D(Aj) for all j ≤ k. In particular,
we have u ∈ D(A), hence by Theorem 1.14 (iv) there exists d

dtV (t)u and we have
d
dtV (t)u = V (t)Au. Since u is also in D(A2), Au is obviously in D(A). Now, the latter
equation gives existence of d

dtV (t)Au and implies that it is equal to d2

dt2
V (t)u. Again by

induction, we conclude k-fold differentiability. Continuity of the derivatives follows by
strong continuity of V and (1.8).

In analogy to smoothness of vectors, we define the notion of analyticity of a vector
u ∈ B once we have defined analyticity for Banach space-valued functions.

Definition 1.33. Let K = R or C, B be a Banach space over K, and let Ω be an open
subset of K. We say that a function f : Ω→ B is analytic if for every a ∈ Ω there exists
an r > 0 with B(a, r) ⊆ Ω, and vectors cj ∈ B, j ∈ N0, such that

f(z) =
∞∑
j=0

cj (z − a)j ,
∞∑
j=0

‖cj‖ |z − a|j <∞ (1.9)

for all z ∈ B(a, r). If K = R (resp. if K = C) we say f is a real (resp. complex) analytic
function.

Definition 1.34. Let V be a strongly continuous one-parameter group on the Banach
space B. A vector u ∈ B is called analytic for V if Fu is a real analytic function of
t ∈ R.

Proposition 1.35. Let u ∈ B be an analytic vector for the strongly continuous one-
parameter group V . Then Fu extends to a complex analytic function on a strip S :=
{z ∈ C | |Im (z)| < r} for some r > 0.

Proof. We will prove the result in two steps: First we will show analyticity in an open
neighborhood of 0. In the second step we will use the group homomorphism property of
V to translate the power series.

In analogy to the case of scalar-valued real analytic functions, the corresponding power
series of Fu, p : (−r, r)→ B, t 7→

∑
j≥0 cj t

j , extends to a complex power series p′ : C ⊇
B(0, r) → B, z 7→

∑
j≥0 cj z

j since it converges absolutely as long as |z| < r. In other
words, there exist an r > 0 and coefficients cj ∈ B, j ∈ N0, such that

Fu(z) =
∞∑
j=0

cj z
j ,

∞∑
j=0

‖cj‖ |z|j <∞ ∀z ∈ B(0, r).

In order to obtain a power series of the form (1.9), note that we can translate p′ to
any point within the disc B(0, r) maintaining its values and absolute convergence in a
sufficiently small open neighborhood of that point. That is, for every a ∈ B(0, r) there
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exist coefficients dj ∈ B, j ∈ N0, such that

Fu(z) =
∞∑
j=0

cj z
j =

∞∑
j=0

dj (z − a)j ,
∞∑
j=0

‖dj‖ |z − a|j <∞ ∀z ∈ B(a, r − |a|).

The coefficients are given by (using Cauchy’s Double Series Theorem)

dj =
∞∑
k=j

(
k

j

)
cj a

k−j . (1.10)

Now for an arbitrary a ∈ S := {t + is | |s| < r} there exists some t0 ∈ R such that
a− t0 ∈ B(0, r). Then the ball U := B(a− t0, r− |a− t0|) is included in B(0, r), and we
shall consider the open set t0 + U = B(a, r − |a− t0|) ⊆ S to show analyticity in a.

Thus, let z ∈ t0 + U . Then z − t0 ∈ B(0, r), and by the above argument there exist
dj ∈ B, j ∈ N0, with

Fu(z − t0) =
∞∑
j=0

dj ((z − t0)− (a− t0))j =
∞∑
j=0

dj (z − a)j ,
∞∑
j=0

‖dj‖ |z − a|j <∞.

For all z ∈ S chosen as above, we define F (z) := V (t0)F (z − t0). Since t0 was only
one possible choice for a to be translated into B(0, r), we have to show that Fu(z) is
well-defined. To this end let t1 ∈ R be such that z− t1 ∈ B(0, r). We have to show that
V (t0)Fu(z − t0) = V (t1)Fu(z − t1) which is equivalent to

Fu(z − t0) = V (t1 − t0)Fu(z − t1). (1.11)

Now set x0 := Re (z)− t0, x1 := Re (z)− t1 and observe that

∞∑
j=0

cjx
j
0 = Fu(x0) = V (t1 − t0)Fu(x1) = V (t1 − t0)

∞∑
j=0

cjx
j
1 =

∞∑
j=0

V (t1 − t0)cjx
j
1,

hence by the fact that z − t0, z − t1 ∈ B(0, r), we obtain (having that x0 + Im (z) =
z − t0, x1 + Im (z) = z − t1)

Fu(z − t0) =
∞∑
j=0

cj(z − t0)j = V (t1 − t0)
∞∑
j=0

cj(z − t1)j = V (t1 − t0)Fu(z − t1),

which gives (1.11).
The estimate

∞∑
j=0

∥∥V (t0)d′j
∥∥ |z − a|j ≤ ‖V (t0)‖

∞∑
j=0

‖dj‖ |z − a|j <∞,

then gives analyticity on B(a, r − |a− t0|) ⊆ S. Since a was arbitrary, Fu is a complex
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analytic function on S.

Since the converse statement of Proposition 1.35 is obviously true, we have the fol-
lowing characterization:

Corollary 1.36. A vector u is analytic for some strongly continuous one-parameter
group V if and only if Fu extends to a complex analytic function on a strip S := {z ∈
C | |Im (z)| < r} for some r > 0.

The significance of the concepts of smooth and analytic vectors is underlined by the
fact that their spaces are dense in B.

Proposition 1.37. Let V be a strongly continuous one-parameter group on the Banach
space B. Then the smooth vectors for V are dense in B.

Proof. The proof is given in two steps: First we show the existence of smooth vectors of
a special form, which in turn are used to prove denseness.

Existence: Fix any u ∈ B and any ρ ∈ C∞c (Rn), and set

uρ :=
∫

R
ρ(t)V (t)u dt. (1.12)

Since t 7→ ρ(t)V (t)u is continuous due to strong continuity, it is Bochner measurable
by Theorem A.4. Note that the function t 7→ ‖ρ(t)V (t)u‖ is also continuous, and
hence bounded on the compact support of ρ. It follows that it is Lebesgue integrable,
which is equivalent to t 7→ ρ(t)V (t)u being Bochner integrable by Theorem A.8. Using
Proposition A.10 we obtain

V (s)uρ =
∫

R
ρ(t)V (s+ t)u dt =

∫
R
ρ(t− s)V (t)u dt,

Hence, smoothness of s 7→ V (s)uρ can be established by observing convergence of
the iterated difference quotients using dominated convergence for the Bochner integral
(cf. Theorem A.14). This, by definition, says that uρ is a smooth vector.

Denseness: W.l.o.g., let ρ be a symmetric non-negative mollifier, and set ρj(t) :=
j · ρ(jt). In the following we will use the fact that (ρj ∗ f)(t) → f(t), as j → ∞, for
all t ∈ R, for continuous f : R → C. Finally, we define g to be the continuous function
t 7→ ‖V (t)u− u‖ and observe that∥∥∥∥∫

R
ρj(t)V (t)u dt− u

∥∥∥∥ =
∥∥∥∥∫

R
ρj(t)V (t)u dt−

∫
R
ρj(t) dt u

∥∥∥∥
≤

∫
R
ρj(t) ‖V (t)u− u‖ dt =

∫
R
ρj(−t)g(t) dt

= (ρj ∗ g)(0)→ g(0) = 0,

as j → ∞. Hence, for all ε > 0 there exists j0 ∈ N such that
∥∥uρj − u∥∥ < ε for all

j ≥ j0.
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Corollary 1.38. Let V be a strongly continuous one-parameter group with infinitesimal
generator A. Then each of the spaces D(Ak), k ∈ N, is a dense subspace of B.

Proof. This is immediate since by Proposition 1.32 the space of smooth vectors is a
subset of each D(Ak), k ∈ N.

Proposition 1.39. Let V be a strongly continuous one-parameter group on the Banach
space B. Then the analytic vectors for V are dense in B.

Proof. We will follow the same strategy as in the proof of Proposition 1.37 showing first
the existence of particular analytic vectors which in the following turn out to be dense
in B.

To this end set ρε(t) := (4πε)−1/2 e−t
2/4ε, and note that t 7→ ρε(t)V (t)u : R →

B is continuous, hence Bochner measurable by Theorem A.4 for each fixed u ∈ B.
By Proposition 1.5 (ii), this function is bounded in the norm by the L1(R)-function

(4πε)−1/2K0 ‖u‖ e
−t2
4ε

+M |t|, thus we have Bochner integrability by Theorem A.8. It
follows that

uε :=
∫

R
ρε(t)V (t)u dt

defines a vector in B, and again by Proposition A.10 we have

Fuε(s) = V (s)uε = (4πε)−1/2

∫
R
e
−t2
4ε V (t+ s)u dt = (4πε)−1/2

∫
R
e
−(t−s)2

4ε V (t)u dt.

(1.13)

As above by dominated convergence (cf. Theorem A.14), the right-hand-side of (1.13)
is smooth in s, and it even extends to a holomorphic function, if we replace s by z ∈ C.
Thus, defining Fuε(z) by (1.13), we obtain a B-valued holomorphic function on C. (For
more details see Kadison and Ringrose [11], § 3. 3.)

Denseness follows as in the proof of Proposition 1.37 since the convolution argument
actually holds for all ρ ∈ L1(R) with ρ ≥ 0,

∫
R ρ(t) dt = 1, thus in particular for ρε.

Remark 1.40. In analogy to unitary one-parameter groups, some authors use the nota-
tion V (t) =: etA to denote any strongly continuous one-parameter group V on a Banach
space B. This in turn motivates the definition

ρ̂(iA)u :=
∫

R
ρ(t)eAtu dt =

∫
R
ρ(t)V (t)u dt (1.14)

for u ∈ B and ρ ∈ C∞c (R) in analogy to standard Fourier transform. The vector ρ̂(iA)u
obviously coincides with uρ from Theorem 1.37, and u 7→ ρ̂(iA)u actually defines a
bounded operator from B into B by Proposition 1.5 (ii) and the fact that we can pull
norm signs into the integral (cf. Theorem A.8). Note that ρ̂ε(iA)u can be defined for
ρε = (4πε)−1/2 e−t

2/4ε, and also ρ̂(iA)u for ρ ∈ L1(R) if we require uniform boundedness
of V .
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Remark 1.41 (ρ̂(iA) vs. FT). The above notation is sensible since it coincides with the
standard Fourier transform of ρ ∈ L1(R). Thus, we intent to interpret the strongly con-
tinuous one-parameter group Vξ : R→ C, x 7→ Vξ(x) = e−ix·ξ, ξ ∈ R, in terms of (1.14).
In order to produce an analogue, we must actually identify ξ with the multiplication
operator M : L2(R) ⊇ D(M)→ L2(R), u 7→ (ξ 7→ ξ ·u(ξ)). Then V := x 7→ e−ixM turns
out to be a strongly continuous unitary one-parameter group on L2(R) with infinitesimal
generator iM . Explicitly, V is given by x 7→ (u 7→ (ξ 7→ e−ix·ξu(ξ))), and (1.14) reads

(ρ̂(M)u) (ξ) :=
(∫

R
ρ(x) e−ixMu dx

)
(ξ) =

∫
R
ρ(x) e−ixξ u(ξ) dx = ρ̂(ξ) · u(ξ),

where ρ̂(ξ) denotes the standard Fourier transform of ρ at ξ ∈ R. Hence, ρ̂(M) is simply
the multiplication by the Fourier transform of ρ.

The properties of Fourier transform can be generalized to a large class of functions
on Lie groups, and the corresponding analogues of strongly continuous one-parameter
groups will be their representations. We will study these matters in case of the Heisen-
berg group in Chapter 2.

1.2. Representations of Lie Groups

Representation theory is a powerful approach towards studying abstract algebraic struc-
tures by representing their elements as homomorphisms of linear spaces. Especially,
groups are often represented by linear operators on normed vector spaces of finite and
infinite dimension. Since these spaces are well-understood it is one big asset of represen-
tation theory that purely algebraic problems can be described by means of linear algebra
and functional analysis, respectively.

Applications of representation theory is a vast area comprising diverse branches of
mathematics as well as theoretical physics. In particular representations are a major
tool in harmonic analysis, where they are used to extend classical Fourier analysis on Rn

to general Lie groups. In this section we try to catch a glimpse of a few essential notions
of representation theory and harmonic analysis on Lie groups in order to be prepared
for the special case of the Heisenberg group to be treated in Chapter 2.

Last but not least, let us mention that for sake of a convenient approach all the Lie
groups throughout this text shall be second countable Hausdorff manifolds.

1.2.1. General Groups and Measure

Definition 1.42. Let G be a Lie group with identity element e, and let B be a Banach
space. A strongly continuous representation π of G on B is a map π : G → L(B)
satisfying the following properties

(i) π(g1g2) = π(g1)π(g2) ∀g1, g2 ∈ G,

(ii) π(e) = I,

22



1. Some Prerequisites from Lie Group Representation Theory

(iii) gj
G−→ g ⇒ π(gj)u

B−→ π(g)u ∀u ∈ B.

The space B is called the representation space of π. We shall occasionally denote it by
Bπ.

Definition 1.42 is obviously a generalization of the definition of strongly continuous
one-parameter groups (cf. Definition 1.1), and as in case G = R we will refer to (i) and
(iii) as group homomorphism property and strong continuity, respectively. Since we
will exclusively deal with representations π of this type, we will omit the term strongly
continuous and simply call them representations from now on.

Remark 1.43. Note that in case dim(B) = n < ∞, the space GL (B) forms an open
subgroup of all real-valued n × n-matrices and by smoothness of matrix multiplication
and matrix inversion, it is even a Lie group. Conditions (i) and (ii) from Definition
1.42 now translate into the statement that π is a group homomorphism from G into
GL (B). (In particular, note that (i) implies (ii).) Identifying B with the correspond-
ing isomorphic Rn, property (iii) applied to the Rn-standard basis E := {e1, . . . , en}
gives continuity of all component functions of the matrix representation [π]E,E , and
consequently continuity of π as a map from G to GL (B). Now, it is a fact that every
continuous group homomorphism between two Lie groups is already smooth (cf. Kolar,
Michor and Slovak [13], Theorem 4. 21). Hence, every finite-dimensional Lie group rep-
resentation π of G on B is a smooth group homomorphism between the Lie groups G
and GL (B).

Definition 1.44. Let π : G→ B be a representation of some Lie group G on the Banach
space B. We say π is

(i) non-degenerate if for every u ∈ B, π(g)u = 0 for all g ∈ G implies u = 0,

(ii) invariant on a subspace B1 ⊆ B if π(G)(B1) ⊆ B1,

(iii) faithful if it is injective on G,

(iv) trivial if π(g) = I for all g ∈ G,

(v) irreducible if is non-trivial and the only invariant subspaces are B and {0},

(vi) equivalent to a representation ρ of G on the Banach space B̃ if there exists a vector-
space isomorphism V : B̃ → B (called equivalence) such that π(g) = V ρ(g)V −1 for
all g ∈ G,

(vii) unitary if B = H is a complex Hilbert space and π(g) is a unitary operator on H
for all g ∈ G.

(viii) Two unitary representations π : G → Hπ and ρ : G → Hρ are said to be unitarily
equivalent if they are equivalent with unitary equivalence U : Hρ → Hπ, i.e., π(g) =
Uρ(g)U∗ for all g ∈ G.

Remark 1.45. Note that for unitary π we have the relation π(g)∗ = π(g)−1 = π(g−1).
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As we have seen in § 1.1, an essential tool for the special case G = R is integration
for B-valued functions. Hence, our first step in the more general case is to provide such
a notion. To set the stage for the construction to come recall from the special case that
one of the basic properties of the Lebesgue measure is its translation invariance, which
results in translation invariance of the Lebesgue integral and the corresponding Bochner
integral. The generalization of this notion is a left invariant measure on G, which we
construct now.

Proposition 1.46. Let G be a Lie group. Then there exists a smooth left invariant
measure dg on G.

Proof. Let n := dim(G) and α ∈
∧n T ∗e (G), α 6= 0, which is determined up to a scalar

factor since dim(
∧n T ∗e (G)) = 1. Now, if λg : G → G, h 7→ gh denotes the the left

multiplication and X1, . . . , Xn ∈ X(G) are smooth vector fields, we define ω ∈ Ωn(G) by

ω(g)(X1(g), . . . , Xn(g)) := α(Tλg−1 ·X1(g), . . . , Tλg−1 ·Xn(g)).

This resulting n-form is invariant under left translations:

(λg)∗ω(h)(X1(h), . . . , Xn(h)) : = ω(gh)
(
Tλg ·X1(h), . . . , Tλg ·Xn(h)

)
= α

(
Tλh−1g−1Tλg ·X1(h), . . . , Tλh−1g−1Tλg ·Xn(h)

)
= α

(
Tλh−1 ·X1(h), . . . , Tλh−1 ·Xn(h)

)
= ω(h).

Moreover, ω is nowhere vanishing and due to its definition determined up to a scalar
factor c ∈ R. Hence, it defines an orientation on G such that via integration over G we
obtain a left invariant measure that is denoted by dg. Finally, if f : G→ C is integrable
with respect to dg, we have∫

G
f(hg) dg =

∫
G
f(λhg) dg =

∫
G
f(λhg) (λh)∗dg =

∫
G

(λh)∗(f dg) =
∫
λh(G)

f(g) dg

=
∫
G
f(g) dg.

Remark 1.47. In case G = Rn the measure dg agrees with the n-dimensional Lebesgue
measure up to a factor c ∈ R.

Definition 1.48. For 1 ≤ p ≤ ∞, we denote by Lp(G) the space of all (equivalence
classes of) dg-measurable functions f : G→ C such that

‖f‖Lp(G) :=


(∫

G
|f(g)|p dg

)1/p

< ∞ if 1 ≤ p <∞

inf{c ∈ R | dg({|f | > c}) = 0} <∞ if p =∞.
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Remark 1.49. The spaces Lp(G) are Banach spaces since this can be shown in general
for all measure spaces (A,Ω, µ) (cf. Taylor [19], Theorem 4. 4).

Remark 1.50. As a matter of fact Haar has proved the far more general result that on
every locally compact topological group there exists a locally finite left invariant Radon
measure. For detail see, e.g., Folland [7], § 2. 2. The procedure we were following above
obviously benefits greatly from the additional structure available on Lie Groups and was
in fact known long before Haar’s work. It actually goes back to Sophus Lie. Nevertheless
dg of Proposition 1.46 is called a Haar measure. A construction completely analogous
to the one of dg gives a right invariant Haar measure drg on G, which may coincide with
dg depending on the nature of G. In fact, there is a way to measure right-invariance of
dg. Setting

∆(h) :=
dg(Eh)
dg(E)

(1.15)

for any Borel set E ⊆ G of finite positive measure, ∆ : G→ R+ defines a function, which
is independent of the choice of E. It is also independent of the choice of dg on G and
is called the modular function of G. Furthermore, it turns out to be a continuous group
homomorphism from G into (R∗,+), which is either trivial, i.e., ∆ = 1, or unbounded.
In the trivial case the group G is called unimodular. Obviously abelian groups are uni-
modular as well as discrete groups, but there are many more, in particular any compact
group is unimodular. It can be shown that from (1.15) it follows that∫

G
f(gh−1) dg = ∆(h)

∫
G
f(g) dg

and ∫
G
f(g) dg =

∫
G
f(g−1)∆(g−1) dg (1.16)

for all dg-measurable functions f (cf. Folland [7], § 2. 4).

1.2.2. Translations Revisited

Now, we come back to our main example in a new disguise (cf. Example 1.2).

Definition 1.51. Let G be a Lie group and f ∈ Lp(G), 1 ≤ p <∞. Then the map

τp : G→ Lp(G),

(τp(h)f)(g) := f(h−1g),

is called the left translation on Lp(G).

Theorem 1.52. Let G be a Lie group and p ∈ [1,∞). Then the left translation τp is a
strongly continuous representation of G on Lp(G).
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Proof. We show that the properties of Definition 1.42 are satisfied. Properties (i) and
(ii) are immediate. We split up the proof of (iii) into two parts: To begin with, we
show the property for the dense subset C∞c (G) ⊆ Lp(G). Eventually, we use a density
argument analogous to Example 1.2 to conclude the proof.

Thus, let ϕ ∈ C∞c (G). We have to show that for hj → h in G

‖τp(hj)ϕ− τp(h)ϕ‖Lp → 0,

equivalently
∫
G
|ϕ(h−1

j g)− ϕ(h−1g)|p dg → 0. (1.17)

Hence, let ε > 0. We recall that G, being a Hausdorff manifold, is locally compact
(cf. Kunzinger [15], Proposition 2. 3. 6). Let V be a compact neighborhood of h and
recall that U := supp(f) is also compact. Hence K := V −1U := {h−1g | h ∈ V, g ∈ U}
is also compact and τ(l)ϕ is supported in K if l ∈ V . Hence, for j large enough (in
particular such that hj ∈ V ) we have by uniform continuity of ϕ on U that∫

G
|ϕ(h−1

j g)− ϕ(h−1g)|p dg =
∫
K
|ϕ(h−1

j g)− f(h−1g)|p dg ≤ εp
∫
K
dg.

Recall that
∫
K′ 1 dg <∞ for all compact sets K ′ ⊆ G due to regularity of dg, hence (iii)

holds for all ϕ ∈ C∞c (G).
Finally, using the fact that C∞c (G) ⊆ Cc(G) ⊆ Lp(G) is dense (cf. Hewitt and

Ross [10], Theorem 12. 10, all the constructions being similar to the Rn-case and re-
lying on regularity of dg), we may literally use the argument of (1.1) in Example 1.2 to
conclude the proof.

Remark 1.53. The map τp is often called the left regular representation of G. Analo-
gously, we find that the right translation ρp : G→ Lp(G, drg), (ρp(h)f)(g) := f(gh−1),
1 ≤ p < ∞, (drg denotes a right invariant Haar measure, cf. Remark 1.50) is a repre-
sentation of G on Lp(g, drg), called the right regular representation of G. In case p = 2,
both τ2 and ρ2 are unitary representations.

1.2.3. The Integrated Representation

Any representation π : G→ B of a Lie groupG on a Banach space B induces an action on
certain classes of functions on G. We define the latter by integrating the representation
over the Lie group G. More precisely, let f ∈ L1

c(G), the space of integrable functions
with compact support on G, and u ∈ B. Then we set

π(f)u :=
∫
G
f(g)π(g)u dg. (1.18)

Note that this is a Bochner integral. Its existence can be derived from the facts we
have collected in Appendix A: In fact, the map g 7→ f(g)π(g)u is a continuous B-valued
function with compact support on G for each u ∈ B. Therefore, it is Bochner measurable

26



1. Some Prerequisites from Lie Group Representation Theory

by Corollary A.5 (ii) and, since it is bounded in the norm, it is also Bochner integrable
on G. See Theorem A.8.

Proposition 1.54. Let G be a Lie group with Haar measure dg and let π be a repre-
sentation of G on a Banach space B. If f is integrable with compact support, then π(f)
defined by (1.18) is a bounded operator on B.

Proof. To estimate the integral (1.18), it suffices to look for a bound for π on the compact
support of f . Recall that we found such a bound for strongly continuous one-parameter
groups using the uniform boundedness principle by Banach and Steinhaus (cf. Propo-
sition 1.5). In fact, the same procedure can be applied in the present situation: the
restriction π : K → B, g 7→ π(g)u, with K := supp(f) ⊂⊂ G, is continuous for every
fixed u ∈ B and therefore bounded on the compact set K. Hence, supg∈K ‖π(g)u‖B <∞
for all u ∈ B. The Banach-Steinhaus Theorem yields the existence of a uniform bound
M ∈ R+ in the operator norm for π on K. Hence, applying inequality (A.1) from
Theorem A.8, we estimate

‖π(f)u‖B ≤
∫
G
‖f(g)π(g)u‖B dg =

∫
K
|f(g)| ‖π(g)u‖B dg ≤ M ‖f‖L1 ‖u‖B .

Strengthening the conditions on π (e.g., uniform boundedness), we need less strict
presumptions on f to obtain boundedness of π(f). For example, π(f) is bounded for
f ∈ L1(G) if π is unitary.

Now, having extended the representation’s action to integrable functions, we will
prove the existence of an algebraic structure on L1(G), which permits a corresponding
representation. More precisely, defining the convolution ∗ : L1(G)× L1(G)→ L1(G) by

(f1 ∗ f2)(h) :=
∫
G
f1(g)f2(g−1h) dg, (1.19)

one sees that π(f1 ∗ f2) = π(f1) ◦ π(f2). We will discuss this issue more thoroughly in
case G = Hn in § 2.2.2. Some prerequisites for that matter are collected in App. B on
Bochner integration.

1.2.4. Smooth Vectors on G

Just as in the case of strongly continuous one-parameter groups we can give sense to the
notion of smooth vectors for a representation π, and we will see that their set is dense
in B.

Definition 1.55. Let π be a representation of G on B. A vector u ∈ B is called smooth
vector (or C∞-vector) if Fu(g) := π(g)u is a smooth B-valued function on G. We denote
the space of smooth vectors in B for the representation π by C∞(π).

Theorem 1.56. The space C∞(π) is a dense subset of B.
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Proof. This proof proceeds along the lines of the one of Proposition 1.37. First we
will construct special C∞-vectors, then we construct an approximating sequence of C∞-
vectors for any u ∈ B.

Existence: For any f ∈ C∞c (G) we will prove that π(f)u is a smooth vector for all
u ∈ B. That is, for an arbitrary but fixed u ∈ we have to show that h 7→ π(h)π(f)u
is a smooth function from G into B. Using Proposition A.10 and applying a change of
variables, we rewrite the vector by means of the Bochner integral as

π(h)π(f)u = π(h)
∫
G
f(g)π(g)u dg =

∫
G
f(g)π(hg)u dg =

∫
G
f(h−1g̃)π(g̃)u dg̃. (1.20)

Since smoothness is a local property, an explicit proof would involve local coordinates in
order to compute iterated partial derivatives. Now, the final identity of (1.20) shows us
that we would have to concentrate on pulling the differential quotients into the integral,
applying them to the smooth function f . This, in turn, could be achieved in a straight-
forward manner using dominated convergence (cf. Theorem A.14).

Denseness: Following the lines of the proof of Proposition 1.37, we construct an
approximating sequence by choosing a sequence of mollifiers fj ∈ C∞c (G) with fj >
0,
∫
G fj(g) dg = 1 for all j ∈ N, supported in a sequence of (compact) neighborhoods

of e shrinking to {e}, as j → ∞. In order to establish denseness, we use the fact that
(fj ∗ f)(h) → f(h) for all f ∈ C(G) and for all h ∈ G, as j → ∞: Let ε > 0, h ∈ G
and U be a sufficiently small compact neighborhood of e such that

∣∣f(g−1h)− f(h)
∣∣ < ε

for all g ∈ U . For sufficiently large j we have supp(fj) ⊆ U and therefore the following
estimate:

|(fj ∗ f)(h)− f(h)| =
∣∣∣∣∫
G
fj(g)f(g−1h) dg −

∫
G
fj(g) dg f(h)

∣∣∣∣
≤
∫
G

∣∣f(g−1h)− f(h)
∣∣ fj(g) dg

=
∫
U

∣∣f(g−1h)− f(h)
∣∣︸ ︷︷ ︸

<ε

fj(g) dg +
∫
G\U

∣∣f(g−1h)− f(h)
∣∣ fj(g)︸ ︷︷ ︸

= 0

dg

< ε

∫
U
fj(g) dg︸ ︷︷ ︸

= 1

+ 0 = ε.

Now, we employ the above result to the continuous function f := g 7→
∥∥π(g−1)u− u

∥∥
B

.
Using (A.1), we obtain

‖π(fj)u− u‖B =
∥∥∥∥∫

G
fj(g)π(g)u dg −

∫
G
fj(g) dg u

∥∥∥∥
B

≤
∫
G
fj(g) ‖π(g)u− u‖B dg

=
∫
G
fj(g)f0(g−1) dg = (fj ∗ f0)(e)→ f0(e) = 0,

as j →∞. This completes the proof.
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1. Some Prerequisites from Lie Group Representation Theory

Remark 1.57. The set G(π) := {π(f)u | u ∈ B, f ∈ C∞c (G)} is called the G̊arding
space of π, and we have shown that G(π) ⊆ C∞(π) is dense in B.

Moreover, note that if dim(B) <∞, then G(π), being a dense subspace of B, coincides
with B. We conclude that all the vectors in B are smooth.
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2. Foundations of Harmonic Analysis on
the Heisenberg Group

2.1. The Heisenberg Group Hn

2.1.1. Motivation

In both classical and quantum mechanics, position and momentum are regarded as the
two fundamental properties of a particle. In the first case, by Newton’s second law,
the motion of a particle is determined completely once we know the forces involved and
have measured its position and momentum at one instant of time. That is, position and
momentum give a complete description of the state of a particle. Moreover, all physical
observables, represented by real-valued smooth functions on phase space, i.e., the space
of all possible states, are completely specified by the state.

In quantum mechanics, however, there arise two complications: First, observables only
take values in probability distributions rather than in the reals and, second, nature pre-
vents us from measuring position and momentum of a particle at the same time. Hence,
it does not come as a surprise that the mathematical formalisms used to describe the two
theories are quite distinct. In quantum mechanics observables are no longer functions
on R2n but rather represented by self-adjoint operators on the Hilbert space L2(R2n). In
spite of these grave formalistic differences, in both cases we have to distinguish strictly
between position and momentum coordinates respectively operators. While, e.g., all the
position ”coordinates” behave alike, they are very different from the momentum ”coor-
dinates”. In other words, these quantities must not be interchanged. More precisely,
the degree of interchangeability plays an important role in physics, where the relation
between position and momentum is called complementarity (cf. Messiah [16]). It is very
often expressed in terms of so-called commutation relations, realized by a Lie bracket,
a concept that requires some algebraic structure on the involved underlying spaces (all
the details will be presented in the next subsection). To conclude this motivation, note
that the commutation relations of position and momentum in quantum mechanics are
derived in analogy to those of classical physics and are formally identical. Note that
there also appear other complementary pairs in quantum mechanics as, for example,
energy and time.

2.1.2. Lie Algebras and Commutation Relations

The commutation relations mentioned above are essentially connected to a mathemati-
cal concept called Lie algebra. Although historically derived as so-called ”infinitesimal
groups” from their corresponding Lie groups (then called ”transformation groups”), one
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2. Foundations of Harmonic Analysis on the Heisenberg Group

simple and illustrating example of a Lie algebra arises naturally in form of the vec-
tor space Lin(E) of all linear operators on any other vector space E equipped with
the standard commutator of operators [A,B] := AB − BA. In general, this oper-
ation need not be commutative (unless it is trivial) nor associative, but rather an-
tisymmetric in its two slots. Furthermore, it satisfies the so-called Jacobi identity
[[X,Y ], Z]+ [[Y,Z], X]+ [[Z,X], Y ] = 0. As a matter of fact, these two properties suffice
to give a complete abstract definition of Lie algebras including all the early examples
that first appeared in Sophus Lie’s work.

Definition 2.1. Let K = R or C. A K-vector space E with a bilinear form [ , ] :
E × E → E is a Lie algebra if

(i) [ , ] is antisymmetric, i.e. [X,Y ] = −[Y,X], and

(ii) satisfies the Jacobi identity [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

The bilinear form [ , ] is called its corresponding Lie bracket.

Recalling that the Lie bracket on any Lie group G (or generally on any manifold,
cf. Kolar, Michor and Slovak [13], § 3. 4) satisfies (i) and (ii), a corresponding bracket
on its tangent space TeG := g can be obtained by simply evaluating the Lie group
brackets at e, turning g into a Lie algebra. Not surprisingly, this procedure goes back
to Sophus Lie who sought deeper insights into transformation groups by studying their
corresponding infinitesimal groups (see above).

Now, let us give some additional definitions before returning to commutation relations
and physics-related concepts.

Definition 2.2. If g1 and g2 are Lie algebras, then a homomorphism of Lie algebras (or
Lie algebra homomorphism) ϕ : g1 → g2 is a linear mapping, which is compatible with
the brackets, i.e., one that suffices [ϕ(X), ϕ(Y )] = ϕ([X,Y ]) for all X,Y ∈ g1.

An isomorphism of Lie algebras is a bijective Lie algebra homomorphism.

Example 2.3. We will now place the commutation relations in the present context. To
this purpose, consider Lin(L2(R2n)) equipped with the usual commutator of operators.
Then, the j-th position operator is defined to be the linear mapping

Qj : S(Rn)→ S(Rn),
Qjf(x) := Xjf(x) := xjf(x) (2.1)

for x ∈ Rn and j ∈ {1, . . . , n}. Its ”dual”, the k-th momentum operator, is defined by

Pk : S(Rn)→ S(Rn),

Pkf(x) := hDkf(x) := −ih ∂f
∂xk

(2.2)
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2. Foundations of Harmonic Analysis on the Heisenberg Group

for x ∈ Rn and k ∈ {1, . . . , n}, where ∂/∂xj denotes the distributional derivative and h
Planck’s constant (which we will usually set equal to 1). Now, a short calculation gives

[Pj , Pk] = [Qj , Qk] = 0, [Pj , Qk] = −ihδjkI, (2.3)

the so-called Heisenberg commutation relations.

2.1.3. The Heisenberg Algebra

We are now prepared to turn R2n+1 into a Lie algebra by means of a Lie bracket and
to implement the commutation relations of classical and quantum mechanics. This will
eventually lead us to the structures of the Heisenberg algebra and group.

Def. & Prop. 2.4. Let the bilinear form [ , ] : R2n+1 × R2n+1 → R2n+1 be defined by

[(t, q, p), (t′, q′, p′)] := (pq′ − qp′, 0, 0), (2.4)

where pq′ abbreviates 〈p, q′〉, the standard inner product on Rn. Then [ , ] is a Lie
bracket on R2n+1. We will call (R2n+1, [ , ]) the Heisenberg algebra and denote it by hn.

Proof. We only have to prove that [ , ] is a Lie bracket: The first property is obvious.
With respect to the second one, note that any expression of the form [A,B] = AB−BA
satisfies the Jacobi identity. So, we are done since the Lie bracket of hn reduces to this
form.

If T,Q1, . . . , Qn, P1, . . . , Pn denotes the standard basis for R2n+1, the Lie algebra
structure is given by

[Pj , Pk] = [Qj , Qk] = [Pj , T ] = [Qj , T ] = 0, [Pj , Qk] = δjkT.

Since these formulas are precisely the commutation relations in classical and quan-
tum mechanics, we see that mapping the fundamental observables on T,Q1, . . . , Qn,
P1, . . . , Pn is a Lie algebra isomorphism.

With a view to identifying the Lie group corresponding to hn, it turns out to be
convenient to rewrite the elements of R2n+1 in the following form: To each (t, q, p) we
associate the real-valued (2n+ 1)× (2n+ 1) matrix

m(t, q, p) :=


0 0 · · · 0 0
q1 0 · · · 0 0
...

...
. . .

...
...

qn 0 · · · 0 0
t p1 · · · pn 0

 . (2.5)
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2. Foundations of Harmonic Analysis on the Heisenberg Group

Furthermore, we define a second type of matrices, namely

M(t, q, p) := I +m(t, q, p) =


1 0 · · · 0 0
q1 1 · · · 0 0
...

...
. . .

...
...

qn 0 · · · 1 0
t p1 · · · pn 1

 . (2.6)

Simple matrix multiplication gives the equalities

m(t, q, p)m(t′, q′, p′) = m(pq′, 0, 0), (2.7)
M(t, q, p)M(t′, q′, p′) = M(t+ t′ + pq′, q + q′, p+ p′). (2.8)

Applying the commutator to (2.7) and (2.8), it follows that

[m(t, q, p),m(t′, q′, p′)] = m(pq′ − qp′, 0, 0), (2.9)
[M(t, q, p),M(t′, q′, p′)] = M(pq′ − qp′, 0, 0). (2.10)

Hence, the linear operators X 7→ m(X) and X 7→M(X) are a Lie algebra isomorphisms
from hn to {m(X) | X ∈ R2n+1} and {M(X) | X ∈ R2n+1}, respectively. From (2.7) we
obtain by simple matrix multiplication

m(t, q, p)2 = m(pq, 0, 0), and m(t, q, p)k = 0, ∀k ≥ 3. (2.11)

2.1.4. Construction of the Heisenberg Group

Finally, we employ the exponential map to identify the Lie group of the Heisenberg
Lie algebra. This will lead us to the definition of the Heisenberg group. We recall
from differential geometry (cf. Kolar, Michor and Slovak [13], Definition 4. 18) that the
exponential map from a Lie algebra g to its Lie group G is defined via the flow of the
left invariant vector field LX := g 7→ TeλgX, X ∈ g. More precisely, exp(X) := FlLX1 (e).
The exponential map is a diffeomorphism from some neighborhood of 0 in g to some
neighborhood of e in G. In the particular cases of G = GL(n,R) and G = (R∗, ·) the
exponential mapping coincides with the matrix exponential and the standard exponential
function, respectively.

Now, in case of the Heisenberg Lie algebra hn we have identified the initial Lie algebra
(R2n+1, [ , ]) with {m(X) | X ∈ R2n+1} for which the exponential map coincides with
the matrix exponential. Moreover, the exponential reduces to a sum of three matrices
due to (2.11):

exp(m(t, q, p)) = I +m(t, q, p) +
1
2
m(pq, 0, 0) = M(t+

1
2
pq, q, p). (2.12)

Thus, the exponential is a global diffeomorphism from hn onto {M(X) | X ∈ R2n+1},
and it is easy to show that the latter set together with the multiplication (2.8) is a group.
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2. Foundations of Harmonic Analysis on the Heisenberg Group

One possible definition of the Heisenberg group hence is given via the identification of
{M(X) | X ∈ R2n+1} with the vector space R2n+1, defining the group law in analogy to
(2.8) by

(t, q, p)(t′, q′, p′) = (t+ t′ + pq′, q + q′, p+ p′). (2.13)

The more frequent definition (we will show their equivalence right below) emanates from
another group law on {M(X) | X ∈ R2n+1} that is induced by the exponential function
and the formula

exp(m(t, q, p)) exp(m(t′, q′, p′)) = exp
(
m(t+ t′ +

1
2

(pq′ − qp′), q + q′, p+ p′)
)
,

(2.14)

which can be derived in a straightforward manner. Finally, we are ready to give the two
distinct but ”isomorphic” definitions of the Heisenberg group.

Def. & Prop. 2.5. We define Hn to be the vector space R2n+1 with the group multi-
plication

(t, q, p)(t′, q′, p′) :=
(
t+ t′ +

1
2

(pq′ − qp′), q + q′, p+ p′
)
. (2.15)

Then Hn is a Lie group and we call it the Heisenberg group. Its unit element is (0, 0, 0)
and the inverse to a given element (t, q, p) is (−t,−q,−p). Its Lie algebra hn coincides
with the Heisenberg algebra (cf. Definition 2.4), and the exponential map from hn to Hn

is merely the identity.

Def. & Prop. 2.6. Consider the vector space R2n+1 with the group law

(t, q, p)(t′, q′, p′) = (t+ t′ + pq′, q + q′, p+ p′).

This is also a Lie group, with unit element (0, 0, 0), and the inverse to a given element
(t, q, p) is of the form (−t + pq,−q,−p). We call it the polarized Heisenberg group and
denote it by Hn

pol.
Furthermore, there exists an isomorphism ϕ : Hn → Hn

pol, which is formally identical
with the exponential map from hn to Hn

pol (since the Lie algebras coincide). The map ϕ
is explicitly given by

(t, q, p) 7→ (t+
1
2
pq, q, p). (2.16)

Proof. The only thing that is neither obvious nor already proved above is the isomor-
phism between Hn and Hn

pol; this, however, follows from the relation (2.12) via a straight-
forward calculation.

The construction of Hn and Hn
pol gains another aspect if seen in the light of finite-

dimensional representations of Lie groups (cf. Rem.1.43) and Lie algebras. To this end,
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2. Foundations of Harmonic Analysis on the Heisenberg Group

we define

Definition 2.7. Let g be a Lie algebra and let E be a vector space over K = R or C.
We say, π : g → Lin(E) is a Lie algebra representation of g on E if it is a Lie algebra
homomorphism from g into the Lie algrebra (Lin(E), [ , ]).

Taking this into account, equation (2.9) states that the map

m : hn → {m(X) | X ∈ R2n+1} ⊆ M(n+ 2,R) ∼= Lin(Rn+2)

from (2.5) is a Lie algebra representation of hn on Rn+2, whereas exp ◦m : Hn →
GL
(
Rn+2

)
is a Lie group representation of Hn on Rn+2 by (2.14). Furthermore, we

observe that due to (2.10) and (2.8), the map M : hn → GL
(
Rn+2

)
⊆ M(n+ 2,R) Hn

pol

from (2.6) is a Lie algebra representation of hn as well as a Lie group representation of
Hn
pol on Rn+2.

Definition 2.8. Let G be a group. Then, we define the commutator of g, h ∈ G by
[g, h] := g−1h−1gh and the commutator subgroup of G by

Gc := {[g, h] ∈ G | g, h ∈ G} .

Furthermore, the center of G is defined to be the set of the elements that commute with
all elements in the group, i.e.,

Z(G) := {g ∈ G | gh = hg ∀h ∈ G}.

Remark 2.9. The group laws (2.13) and (2.15) yield that

Z := {(t, 0, 0) | t ∈ R} (2.17)

is the center as well as the commutator subgroup of both Hn and Hn
pol. In order to prove

that, let (t, q, p) and (t′, q′, p′) be elements of Hn and observe that by (2.15) we have

(t′, q′, p′)−1(t, q, p)−1 = (−t′,−q′,−p′)(−t,−q,−p)

=
(
−t− t′ + 1

2
(pq′ − qp′),−q − q′,−p− p′

)
.

Hence, the commutator of (t, q, p) and (t′, q′, p′) is equal to (pq′−qp′, 0, 0) ∈ Z. Moreover,
pq′ − qp′ = t is solvable for each t ∈ R if at least one of the vectors p, q ∈ Rn does not
vanish. In total we have Hnc = Z.

In order to prove Z(Hn) = Z, note that Z(G) = {g ∈ G | [g, h] = e ∀h ∈ G} for any
group G, which in case G = Hn implies that any (t, q, p) ∈ Z(Hn) satisfies pq′ = qp′

for all (t′, q′, p′) ∈ Hn. In case p′ = 0, this yields p ⊥ q′ for all q′ ∈ Rn, hence p = 0.
Thus by symmetry, both p and q must vanish, whereas t can be chosen arbitrarily. We
conclude Z(Hn) ⊆ Z. The converse inclusion is obvious.

The same argument yields Z(Hn
pol) = Z = Hn

pol
c since by a short calculation the

commutator of (t, q, p) and (t′, q′, p′) in Hn
pol is equal to (pq′ + qp′, 0, 0). (Now, simply
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set q̃ := −q.)

Remark 2.10. Moreover, note that the group multiplications (2.13) and (2.15) can
be also be expressed in terms of vector addition on R2n. Hence, left-invariance of the
Haar measure on Hn and Hn

pol, respectively, is equivalent to left-invariance under the
translations τh(f)(x) := f(−h + x) = f(x − h), for x, h ∈ R2n+1. By uniqueness of
the Haar measure up to a multiplicative positive constant c (cf. § 1.2.1), this implies
that the Haar measure agrees with the (2n+ 1)-dimensional Lebesgue measure up to c.
For the sake of convenience, we set c = 1 and integrate with respect to the Lebesgue
measure. Obviously, our measure is also right-invariant, and we therefore have ∆Hn = 1
(cf. § 1.2.1).

2.1.5. The Automorphisms of the Heisenberg Group

Definition 2.11. Let G1 and G2 be two Lie groups. A Lie group homomorphism from
G1 to G2 is a smooth map ϕ : G1 → G2 which is a group homomorphism. A Lie group
isomorphism is a bijective Lie group homomorphism, and a Lie group automorphism of
a Lie group G1 is a Lie group isomorphism ϕ : G1 → G1. The set of all automorphisms
of a Lie group G1 is denoted by Aut(G1).

Definition 2.12. An automorphism of a Lie algebra g is a Lie algebra isomorphism
(cf. Definition 2.2) from g onto itself. We denote the set of all Lie algebra automorphisms
of g by Aut(g).

Remark 2.13. Note that, given a Lie group G1 and a Lie algebra g2, the sets Aut(G1)
and Aut(g2) can be turned into groups by defining the respective group multiplications
to be the composition of automorphisms.

Let Aut(Hn) and Aut(hn) be the automorphism groups of Hn and hn, respectively.
Since the underlying set of both Hn and hn is R2n+1, Aut(Hn) and Aut(hn) are both
sets of mappings from R2n+1 to itself. As a matter of fact, they are even equal. This is
actually a consequence of a general result on simply connected Lie groups and their Lie
algebras. We will, however, provide a direct proof.

Proposition 2.14. Aut(hn) = Aut(Hn).

Proof. Let ϕ ∈ Aut(hn). Note that by (2.15) we have the following relations between
the respective multiplications on Hn and hn

XY = X + Y +
1
2

[X,Y ] and Y X = X + Y − 1
2

[X,Y ] (2.18)

for all X,Y ∈ R2n+1. Now, it is a direct consequence that ϕ respects the group multi-
plication (2.15)

ϕ(XY ) = ϕ(X) + ϕ(Y ) +
1
2

[ϕ(X), ϕ(Y )] = ϕ(X)ϕ(Y ).
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So, we have ϕ ∈ Aut(Hn).
In order to prove the reverse inclusion, let ϕ ∈ Aut(Hn) and let Y ∈ lin{X} for some

X ∈ R2n+1. Then, [X,Y ] = 0, and (2.18) gives XY = X + Y = Y X. Moreover

ϕ(X) + ϕ(Y ) +
1
2

[ϕ(X), ϕ(Y )] = ϕ(X)ϕ(Y ) = ϕ(XY ) = ϕ(X + Y )

= ϕ(Y X) = ϕ(Y )ϕ(X) = ϕ(X) + ϕ(Y )− 1
2

[ϕ(X), ϕ(Y )].

Hence, ϕ(X + Y ) = ϕ(X) + ϕ(Y ) for all Y ∈ lin{X}. In particular, we have ϕ(nY ) =
nϕ(Y ) for all n ∈ N, and by setting Y ′ := nY we also have 1

nϕ(Y ′) = ϕ( 1
nY
′). It follows

that ϕ is linear on the dense subspace {qX | q ∈ Q} ⊆ lin{X} and by continuity on all
of lin{X}. Let now X and Y be arbitrary vectors in R2n+1. Using (2.18), we observe
for t > 0 that

tϕ

(
X + Y +

t

2
[X,Y ]

)
= ϕ

(
tX + tY +

t2

2
[X,Y ]

)
= ϕ((tX)(tY ))

= tϕ(X)tϕ(Y ) = tϕ(X) + tϕ(Y ) +
t2

2
[tϕ(X), tϕ(Y )].

Diving by t and letting t → 0, continuity of ϕ yields ϕ(X + Y ) = ϕ(X) + ϕ(Y ) for all
X,Y ∈ R2n+1. Thus, by the above reasoning, ϕ is linear on R2n+1, and we conclude the
proof with the following calculation:

ϕ([X,Y ]) = 2ϕ(XY −X − Y ) = 2(ϕ(X)ϕ(Y )− ϕ(X)− ϕ(Y )) = [ϕ(X), ϕ(Y )].

The theorem to come is a classification of Aut(Hn). As a matter of fact, each au-
tomorphism of Hn can be written as the composition of elements of the following four
subgroups Hi ⊆ Aut(Hn):
H1 : The first group involves the symplectic maps Sp (n,R). For p, q, p′, q′ ∈ R2n, we

define the standard symplectic form on R2n by

ω((q, p), (q′, p′) := pq′ − qp′,

and the symplectic maps (or symplectomorphisms) on R2n are precisely the linear iso-
morphisms on R2n which preserve ω. That is, S ∈ GL (2n,R) is symplectic by definition
if

ω(S(q, p), S(q′, p′) = pq′ − qp′.

We now define H1 to be the subgroup of GL (2n+ 1,R) whose elements are of the form(
t 0
0 S

)
. Since such a linear map respects the Lie bracket of hn, it is clearly an element

of Aut(Hn) by Theorem 2.14.
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H2 : The conjugate maps. For each (c, b, a) ∈ Hn we define the corresponding conju-
gate map by

conj (c,b,a)((t, q, p)) := (c, b, a)(t, q, p)(c, b, a)−1 = (t+ aq − bp, q, p) ∈ Hn.

Note that H2 is obviously a subgroup of Aut(Hn), which is also referred to as the group
of inner automorphisms of Hn.
H3 : The dilations on Hn are defined to be of the form

δr((t, q, p)) := (r2t, rq, rp), r > 0.

It is easy to check that also H3 forms a subgroup of Aut(Hn).
H4 is simply the set {idHn , νHn}, which is of course another subgroup of Aut(Hn).
Using this notation, we will prove the following:

Theorem 2.15. Each ϕ ∈ Aut(Hn) has a unique representation of the form ϕ =
ϕ1 ◦ ϕ2 ◦ ϕ3 ◦ ϕ4, where ϕi is in Hi, i = 1, . . . , 4.

Proof. Recall that each ϕ ∈ Aut(Hn) is also an automorphism of hn, hence a linear
isomorphism on R2n+1. Since the automorphisms of any group G map Z(G) onto itself,
ϕ must be of the form

(t, q, p) 7→ (st+ aq + bp, T (q, p))

for some s ∈ R, a, b ∈ Rn, and T ∈ GL (2n,R) (cf. Remark 2.17). Applying a suitable
conjugation, and an inversion if necessary, we obtain aq + bp = 0 and s > 0. Hence, the
composition of that map with δs−1/2 gives the linear map ϕ′ : (t, q, p) 7→ (t, S(q, p)), where
S ∈ GL (2n,R). Note that ϕ′, as well as ϕ, respects the Lie bracket on hn, so we conclude
the proof with the observation that S must therefore be a symplectomorphism.

2.2. Representations of Hn

2.2.1. The Schrödinger Representation

Recall that the position operator Qj := Xj and the momentum operator Pj := hDj ,
which we have defined in (2.1) and (2.2), respectively, satisfy the Heisenberg commuta-
tion relations (2.3) on S(Rn). This fact has led us to the definition of the Lie bracket
in hn. We now see that the map Ah from the Heisenberg algebra hn into the set of
skew-symmetric operators on S(Rn) defined by

Ah(t, q, p) = i(tI + qX + hpD), (2.19)

with qX :=
∑n

j=1 qjXj and pD :=
∑n

j=1 pjDj , is a Lie algebra homomorphism. It is
therefore even a Lie algebra representation of hn on S(Rn) (cf. Definition 2.7).

Intuitively spoken, exponentiating this map should therefore give a Lie group represen-
tation of Hn on (probably) L2(Rn). Due to skew-symmetry of the operators Ah(t, q, p),
we expect it furthermore to be unitary in analogy to unitary one-parameter groups
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(cf. Remark 1.29). Thus, taking h = 1 for the moment, we compute the operators
etI+qX+pD: To this end let f ∈ S(Rn) and let g : Rn × R→ S(Rn) be defined by

g(x, s) := eis(tI+qX+pD)f(x).

Then g is the solution to the Cauchy problem

∂g

∂s
= i(tI + qX + pD)g, with initial value g(x, 0) = f(x). (2.20)

Equivalently, g is the solution of

∂g

∂s
−

n∑
j=1

pj
∂g

∂xj
= i(t+ qx)g, g(x, 0) = f(x).

Hence, the expression on the left is just the directional derivative of g along the vector
(−p, 1). Thus setting

x(t) := x− sp, G(s) := g(x(s), s),

we obtain the ordinary differential equation

G′(s) = it+ iq(x− sp)G(s), G(0) = f(x),

which is easily solved by

g(x− sp, s) = G(s) = eist+isqx+is2pq/2f(x).

Setting s = 1 and replacing x by x+ p, we obtain the desired result:

ei(tI+qX+pD)f(x) = eit+iqx+ipq/2f(x+ p). (2.21)

Since the translations τp and the multiplication by a complex phase, denoted by mq,
are continuous mappings (indeed isometries) on each Lr(Rn), 1 ≤ r < ∞, the map
ei(tI+qX+pD) extends to a continuous operator (also denoted by ei(tI+qX+pD)) on each
Lr(Rn). In particular, it is unitary on L2(Rn), and it also extends to a continuous
operator on S ′(Rn). (The maps τp and mq are defined via the dual action and coincide
with the classical definitions if applied to test functions. See Friedlander/Joshi [8],
Corollary 8. 3. 1.)

Setting repeatedly two of the parameters t, q and p equal to zero in equation (2.21),
we obtain the formulas

eitIf(x) = eitf(x), (2.22)

eiqXf(x) = eiqxf(x) = mqf(x), (2.23)

eipDf(x) = f(x+ p) = τpf(x). (2.24)
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In analogy to the case of strongly continuous one-parameter groups, we could say that the
iX and iD are the ”infinitesimal generators” of the representations τp (cf. Theorem 1.52)
and mq (immediate, cf. Definition 1.42). However, note that they are not representations
of Hn but of Rn on L2(Rn). In particular, the map t 7→ eitI is a representation of R on
L2(Rn), thus a strongly continuous one-parameter group with generator itI. To achieve
our goal, i.e., to obtain a representation of Hn, we prove some more operator relations
using (2.21) - (2.24).

To begin with note that

ei(tI+qX+pD)f(x) = eiteiqx+ipq/2f(x+ p) = eitIei(qX+pD)f(x). (2.25)

Now, let v, w ∈ Rn. Computing

ei[(q+w)X+(p+v)D]f(x) = ei(q+w)x+i(p+v)(q+w)/2f(x+ p+ v),

and

ei(qX+pD)ei(wX+vD)f(x) = ei(qX+pD)eiwx+ivw/2f(x+ v)

= eiqx+ipq/2+iw(x+p)+ivw/2f(x+ p+ v),

we observe that

ei(qX+pD)ei(wX+vD) = ei/2(pw−qv)ei[(q+w)X+(p+v)D], (2.26)

which, using (2.25), yields the identity

ei(tI+qX+pD)ei(sI+wX+vD) = ei[(t+s+1/2(pw−qv))I+(q+w)X+(p+v)D].

Note that the exponents behave like elements of Hn. At this point we put Planck’s
constant back in, by defining

πh(t, q, p) := ei(htI+qX+hpD) = eihtIei(qX+hpD), (2.27)

or equivalently

πh(t, q, p)f(x) := eiht+iqx+ihpq/2f(x+ hp). (2.28)

We will often write π instead of π1.
Summarizing the last few pages, we have almost completely proved the following.

Theorem 2.16. Let h ∈ R. Then, the map πh from the Heisenberg group Hn into the
space of bounded linear operators on L2(Rn), defined by

πh(t, q, p) := ei(htI+qX+hpD),

is a unitary representation of Hn on the Hilbert space L2(Rn), called the Schrödinger rep-
resentation with parameter h. Moreover, no two representations πh and πh′ are unitarily
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equivalent if h 6= h′.

Proof. The only remaining item of Definition 1.42 to be shown is (iii), i.e., strong conti-
nuity. In order to do so, recall that both τp and mq are strongly continuous on L2(Rn).
So is πh by (2.28).

Inequivalence of πh and πh′ , for h 6= h′, follows from the distinctness of eiht and
eih
′t. We proceed by contradiction: Suppose there exists a unitary equivalence U ∈

L(L2(Rn)) such that Uπh(t, q, p)U∗ = πh′(t, q, p) for all (t, q, p) ∈ Hn. The choice of
(t, q, p) = (t, 0, 0) then yields

eih
′tI = πh′(t, 0, 0) = Uπh(t, 0, 0)U∗ = UeihtIU∗ = eihtI ,

a contradiction.

Remark 2.17. The Heisenberg commutation relations (2.3) are only one half of im-
portant commutation relations in quantum mechanics since they do not respect the
exponentiated operators eiqX , eihpD. The other half are the so-called canonical or Weyl
commutation relations and state the following:

eihpDeiqX = eihqpeiqXeipD. (2.29)

In fact, they are easily deduced from (2.26).

Once again, we turn back to the operators Ah(t, q, p), which led to the definition of
the Schrödinger representation. As we have seen above, unitary one-parameter groups
are essentially connected to skew-adjoint operators. In fact, every unitary one-parameter
group possesses a uniquely determined skew-adjoint infinitesimal generator (cf. Theorem
1.28). Parameterizing the exponent Ah(t, q, p) of the Schrödinger representation, we
obtain a unitary one-parameter group with skew-adjoint generator A, which we might
expect to agree with Ah(t, q, p) itself. However, this is not the case. As a matter of
fact, the operators Ah(t, q, p) are not closed on S(Rn), but A is on its natural domain
D(A) due to Theorem 1.14 (i). Nevertheless, there is a way to find closed extensions for
certain classes of operators.

Definition 2.18. Let T : B ⊇ D(T ) → B be a densely defined operator on a Banach
space B. We say T is closable if the closure G(T ) of its graph G(T ) is the graph of an
operator T . In this case, T is called the closure of T .

Symmetric operators on Hilbert space are indeed important members of this class.
They generally may possess various closed extensions; their smallest is clearly A, their
largest is A∗. In case A = A∗, the closure is self-adjoint, and we say A is essen-
tially self-adjoint. Via the map A 7→ iA, which bijectively identifies symmetric with
skew-symmetric operators, we define the notion of essential skew-adjointness for a skew-
symmetric operator A. For more information see Weidmann [21], Chapter 5.

Keeping this in mind, we finally want to prove the following statement:

Theorem 2.19. The operators Ah(t, q, p) from (2.19) are essentially skew-adjoint on
L2(Rn).
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Proof. Recollecting the facts about Ah(t, q, p) and A from above, we see that they
coincide on S(Rn) ⊆ D(A). Hence, showing that A is the closure of its restriction
A|S(Rn) = Ah(t, q, p), proves the assertion. In fact, this holds true due to the following
two propositions and the fact that S(Rn) is invariant under the unitary one-parameter
group s 7→ esAh(t,q,p).

Def. & Prop. 2.20. Let A : B ⊇ D(A)→ B be a densely defined closed operator on a
Banach space B. We say that a linear subspace D ⊆ D(A) is a core of A if D is dense in
D(A) with respect to the graph norm ‖x‖A := ‖x‖ + ‖Ax‖. Then we have the following:

(i) D is a core if and only if A is the closure of A|D.

(ii) If furthermore λ ∈ ρ(A), then D is a core if and only if (λ−A)(D) is dense in B.

Proof. (i) Recall that A is defined to be closed if its graph G(A) is closed in the product
topology of B×B. Since the product norm (x, y) 7→ ‖x‖+‖y‖ coincides with the graph
norm on the graph of A and (D(A), ‖ .‖A) is a Banach space due to closedness of the
operator, it is evident that G(A|D) is dense in G(A) if and only if D is dense in D(A)
with respect to ‖ .‖A.

(ii) If λ ∈ ρ(A), then (λ − A) is closed and bijective from D(A) = D(λ − A) to B.
Since ‖(λ−A)x‖ ≤ ‖x‖ + ‖(λ−A)x‖ = ‖x‖λ−A, it is even continuous and bijective
from (D(A), ‖ .‖A) to B, hence a homeomorphism by the open mapping theorem. It
follows that D is dense in D(A) if and only if (λ−A)(D) is dense in B.

Proposition 2.21. Let V be a strongly continuous one-parameter group on a Banach
space B with infinitesimal generator A. If D ⊆ D(A) is a linear subspace of B, which is
invariant under all V (t), then A|D = A.

Proof. By Proposition 2.20, it suffices to show that (λ − A)(D) is dense in B for some
λ with Re (λ) > K0 (cf. Theorem 1.14 (vii)), which we assume to be positive w.o.l.g.
We proceed by contradiction: Suppose that there exists w ∈ B∗ \ {0} that annihilates
(λ − A)(D). Since w 6= 0 there exists a non-vanishing u ∈ B such that 〈w, u〉 6= 0.
Now, by denseness of D ⊆ B and continuity of w, we conclude the existence of some
v ∈ D such that 〈w, v〉 6= 0, and w.o.l.g. we may even suppose 〈w, v〉 > 0 (otherwise
multiply w by a phase factor). The fact that V (t)D ⊆ D leads to the computation
d
dt 〈w, V (t)v〉 = 〈w,AV (t)v〉 = 〈w, λv〉, hence 〈w, V (t)v〉 = eλt 〈w, v〉 for all t ∈ R. But
this contradicts Proposition 1.5 (ii), which in the present case states ‖V (t)‖ ≤ MeK0t.
So, we obtain w = 0, hence denseness of (λ−A)(D).

2.2.2. Integrated Representation and Twisted Convolution

In view of classifying all unitary representations of Hn in § 2.2.4, it is quite useful to
extend our repertoire of representations by passing from Lie group representations of
Hn to special algebra representations of the convolution algebra L1(Hn). These new
representations are obtained by integrating the Lie group representations over Hn. This
is an instance of the integrated representation of Lie groups already discussed in § 1.2.3.
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More precisely, we will not integrate over the whole group since equation (2.27) has
taught us that the effect of the t’s on π is just given by the periodic multiplicative scalar
factor eiht. Therefore, it is practical to simply consider an appropriate quotient; formally
we define:

Definition 2.22. The quotient group

Hn
red := Hn/{(k, 0, 0) | k ∈ 2πZ},

is called the reduced Heisenberg group.

We will still denote its elements by (t, q, p) with the understanding that t is an element
of the interval [0, 2π]. Doing so, we can consider the Schrödinger representation πh as a
representation of Hn

red, which is even faithful.
Another simplification, which turns out to be useful is to omit the variable t and hence

the factor eihtI altogether. So, we shall use from time to time the notation

πh(q, p) = πh(0, q, p) = ei(qX+hpD). (2.30)

Finally, we favor another simplification of the present situation by setting Planck’s
constant h = 1. All formulas appearing in the following can easily be recovered in their
general versions by inserting h in its usual positions. Subsequently appearing h’s shall
denote an arbitrary element of Hn.

To begin with, we introduce the integrated Schrödinger representation on the reduced
Heisenberg group.

Corollary 2.23. For F ∈ L1(Hn
red) the integrated representation of π on Hn

red

π(F ) :L2(Rn)→ L2(Rn),

f 7→
∫
Hn
red

F (g)π(g)f dg =
∫

R2n×T
F (t, q, p)π(t, q, p)f dt dq dp (2.31)

defines a bounded operator on L2(Rn) with ‖π(F )‖ ≤ ‖F‖L1(Hn
red). Recall from (1.18)

that the integral is in fact a Bochner integral (cf. Appendix A).

Proof. Boundedness is a direct consequence of Proposition 1.54, and the estimate is a
direct consequence of the fact that π is unitary (cf. Theorem 2.16).

Here we meet an instance of the general result that the vector space L1(Hn
red) endowed

with convolution (cf. (1.19)) is a Banach ∗-algebra, which furthermore possesses a ∗-
representation on L2(Rn) that is compatible with convolution, namely the integrated
representation of π (cf. Proposition B.12). Now, considering F ∈ L1(Hn

red) as a function
on T× R2n, we can expand it in a Fourier series in its variable t:

F (t, q, p) =
∞∑

k=−∞
F̂k(q, p) eikt. (2.32)
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(In fact, the above series is convergent in the L1(T)-norm for almost all q, p ∈ Rn with
limit F (t, q, p) provided usual summation is replaced by summation of its Cesàro means.
See Palmer [17], Theorem 1. 8. 15.) Hence, using (2.32) and dominated convergence for
the Bochner integral (cf. Theorem A.14), π(F ) can be rewritten as follows:

π(F ) =
∫

Rn

∫
Rn

∫
[0,2π]

∞∑
k=−∞

F̂k(q, p) eikteitπ(q, p) dt dq dp

=
∞∑

k=−∞

∫
Rn

∫
Rn
F̂k(q, p)π(q, p) dq dp

∫
[0,2π]

ei(k+1)t dt

= 2π
∫

Rn

∫
Rn
F̂−1(q, p)π(q, p) dq dp = 2π · π(F̂−1).

The equation shows that only one Fourier coefficient contributes to the effect of π on F .
It is therefoe sensible to consider π also as a representation of L1(R2n); the definition of
a compatible group multiplication will be given below (cf. ).

Definition 2.24. Let F ∈ L1(R2n) and let π : R2n → L(L2(Rn) : (q, p) 7→ ei(qX+pD).
Then, we define the integrated representation of F to be the operator

π(F ) : L2(Rn)→ L2(Rn),

f 7→
∫

R2n

F (q, p)π(q, p)f dq dp =
∫

R2n

F (q, p)ei(qX+pD)f dq dp. (2.33)

The defining integral is clearly another Bochner integral. Furthermore, we observe
that for the above-defined π(F ) we have the same sort of statement as in case of π(F )
for F ∈ L1(Hn

red) (cf. Corollary 2.23). Its proof is given along the same lines.

Corollary 2.25. Let F ∈ L1(R2n). Then its integrated representation π(F ) defined by
(2.33) is a bounded operator on L2(Rn) with ‖π(F )‖ ≤ ‖F‖L1(R2n).

As a matter of fact, there is a lot to say about the properties of the operator π(F ) and
the map F 7→ π(F ). We start out giving a description of π(F ) as an integral operator
by doing an informal calculation: For an arbitrary function f ∈ L2(Rn) we compute by
(2.25)

π(F )f(x) =
∫

R2n

F (q, p) eiqx+ipq/2f(x+ p) dq dp =
∫

R2n

F (q, y − x)eiq(y+x)/2f(y) dq dy

=
∫

Rn

∫
Rn
F (q, y − x)eiq(y+x)/2 dq f(y) dy :=

∫
R
KF (x, y)f(y)dy.

We may now also rewrite the integral kernel in the following way:

KF (x, y) =
∫

R
F (q, y − x)eiq(y+x)/2f(y) dq

= (2π)nF−1
1 F

(
y + x

2
, y − x

)
. (2.34)
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Here, Fj denotes the partial Fourier transform in the j-th component. The integral
operator representation of π(F ) leads the way to generalizing the map π(F ) from L2(Rn)
to S ′(Rn). As we will see below, equation (2.34) is in fact the key to the according
theorem, but let us first recall some preparatory facts on the Schwartz kernel theorem
and on Hilbert-Schmidt operators.

To begin with, we give the following definition.

Definition 2.26. Let u ∈ S(Rn) and let v ∈ S(Rm). The tensor product of u and v is
defined to be the smooth map

u⊗ v : Rn × Rm → C,
(x, y) 7→ u(x)v(y).

The linear space spanned by all such tensor products is denoted by S(Rn)⊗ S(Rm).

The Schwartz kernel theorem in its S ′-version now states the following:

Theorem 2.27 (Kernel Theorem, L. Schwartz). Let (u, v) 7→ B(u, v) : S(Rn) ⊗
S(Rm)→ C be a separately continuous bilinear functional of the form B(u, v) = 〈u, Tv〉
for some continuous linear map T : S(Rm) → S(Rn). Then there exists a unique tem-
pered distribution K ∈ S ′(Rn ×Rm) such that B(u, v) = 〈K,u⊗ v〉. The distribution K
is called the kernel of the map T .

Its proof can be found in a very general setting in Trèves [20], cf. Theorem 51. 6 and
the subsequent corollary.

The second notion to be mentioned is a class of bounded operators on Hilbert spaces,
which play an important role in physics, particularly in quantum mechanics.

Definition 2.28. Let H1, H2 be Hilbert spaces and A ∈ L(H1, H2). We say A is a
Hilbert-Schmidt operator if there exists an orthonormal base (eα)α∈A of H1 such that∑

α∈A
‖Aeα‖2H2

<∞. (2.35)

We denote the space of all Hilbert-Schmidt operators from H1 to H2 by HS(H1, H2) and
write HS(H1) for HS(H1, H1).

Hilbert-Schmidt operators turn out to be even compact operators with several equiva-
lent descriptions involving its singular values or s-numbers, arbitrary orthonormal bases
of H1, infinite matrices, etc. As a matter of fact, the value of (2.35) is independent
of the choice of the orthonormal basis of H1 and furthermore agrees with the `2-norm
square of the corresponding s-numbers. That is to say, we have

∑
α∈A
‖Aeα‖2H2

=
∞∑
k=0

sk(A)2 <∞
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for all orthonormal bases (eα)α∈A of H1. This fact is useful to define a norm on
HS(H1, H2), the so-called Hilbert-Schmidt norm, by

‖A‖2HS :=
∞∑
k=0

sk(A)2, (2.36)

which turns HS(H1, H2) into a Banach space, and it is easily seen that ‖A‖ ≤ ‖A‖HS
for all A ∈ HS(H1, H2). Furthermore A is a Hilbert-Schmidt operator if and only if A∗

is and we have ‖A‖HS = ‖A∗‖HS , and the product of the two Hilbert-Schmidt operators
is trace class. In case H1 = H2 = H one uses these facts and shows that ‖ ‖HS is induced
by the scalar product

〈A,B〉HS := tr (B∗A)

which turns HS(H) into a Hilbert space. Moreover, it can be shown that for every
bounded operator T ∈ L(H) the compositions AT and TA are again Hilbert-Schmidt if
A is, satisfying the estimates

‖TA‖HS ≤ ‖T‖ ‖A‖HS ≤ ‖T‖HS ‖A‖HS ,
‖AT‖HS ≤ ‖T‖ ‖A‖HS ≤ ‖T‖HS ‖A‖HS .

Hence, considering the vector space L(H) as a normed algebra with multiplication ◦,
the set HS(H) forms a two-sided ideal within L(H), which is closed under conjugation.
Furthermore, it is a Banach algebra (cf. Definition B.1), and due to the identity ‖A‖HS =
‖A∗‖HS it is even a Banach ∗-algebra with involution A 7→ A∗ (cf. Definition B.4 (v)).

We require one more result on Hilbert-Schmidt operators, i.e., the characterization
of Hilbert-Schmidt operators on L2-spaces: Let (S,AS , µ) and (T,AT , ν) be arbitrary
measure spaces. A linear map A : L2(S)→ L2(T ) is Hilbert-Schmidt if and only if there
exists a function K ∈ L2(T × S) such that

Af(t) =
∫
S
K(t, s)f(s) dµ(s)

for all f ∈ L2(S). In that case, we furthermore have

‖A‖HS = ‖K‖L2(S×T ) . (2.37)

The function K is, of course, the (distributional) kernel that corresponds to A by the
Schwartz kernel theorem.

All the details to these assertions can be found in Weidmann [21], § 6. 2.

Remark 2.29. If U : H1 → H2 is a unitary operator between the Hilbert spaces H1

and H2, we may define an isometric isomorphism Ũ from HS(H1) onto HS(H2) by
Ũ := T 7→ UTU∗: Since HS(H1) and HS(H2) are Hilbert spaces it suffices to prove
that Ũ is unitary. To this end, note that if (eα)α∈A is an orthonormal basis of H1, then
(Ueα)α∈A forms an orthonormal basis of H2. The following computation now proves the
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claim:

‖UAU∗‖2HS =
∑
α∈A
‖UAU∗eα‖2H2

=
∑
α∈A
‖AU∗eα‖2H1

= ‖A‖2HS .

Finally, we are ready to prove the following statement.

Theorem 2.30. The map π from L1(R2n) to L(L2(Rn)), defined by

π(F ) :=
∫

R2n

F (q, p)π(q, p) dq dp =
∫

R2n

F (q, p)ei(qX+pD) dq dp,

extends uniquely to a vector space isomorphism of S ′(R2n) onto L(S(Rn),S ′(Rn)).
Moreover, π is a vector space isomorphism (even unitary up to the factor (2π)n) of
L2(R2n) onto HS(L2(Rn)), the space of Hilbert-Schmidt operators on L2(Rn), satisfying
‖π(F )‖HS = ‖KF ‖L2(R2n) = (2π)n ‖F‖L2 Finally, we have the slightly weaker assertion:
The operator π(F ) is compact on L2(Rn) provided F ∈ L1(R2n).

Proof. From equation (2.34) we can explicitly read off that KF is obtained from F by
two operations that can be extended to the distributional case (via the dual action).
That is, partial Fourier transformation followed by the linear coordinate transformation

(x, y) 7→
(
y + x

2
, y − x

)
=
(

1
2In

1
2In

−In In

)
,

with determinant 1. This map is continuous (even an isomorphism) on S(R2n) hence
extends to a continuous (even isomorphic) map on S ′(R2n). Saturating KF ’s second
variable (by applying it to a Schwartz function), we obtain a continuous linear map
(in the x variable) from S(Rn) into C, thus a tempered distribution. That is to say, if
f, g ∈ S(Rn), then〈∫

Rn
KF ( . , y)f(y) dy, g

〉
= 〈〈KF (·, y), f(y)〉 , g〉 =

〈
KF , g ⊗ f

〉
= 〈F, h〉 ,

where

h(q, p) :=
∫

R2n

e−iqx−ipq/2f(x+ p)g(x) dx.

Now, recall that Schwartz kernel theorem states that every continuous linear map from
S(Rn) to S ′(Rn) has exactly one representation of this form. Hence, we conclude that
F 7→ KF is bijective on S ′(R2n).

It is, furthermore, unitary up to the factor (2π)n (which emanates from the
partial Fourier transform) on L2(R2n). Hence, KF is an L2-kernel and so f 7→∫

Rn KF (·, y)f(y) dy defines a Hilbert-Schmidt operator, say A, with

‖A‖HS = ‖KF ‖L2(R2n) = (2π)n ‖F‖L2(R2n) .
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For F ∈ L1(R2n) choose an approximating sequence of functions Fn in L1(Rn) ∩
L2(Rn), say Fn ∈ C∞c (Rn). Then each operator π(Fn) is Hilbert-Schmidt, thus compact.
Recalling the estimate ‖π(Φ)‖ ≤ ‖Φ‖L1 and the fact that the set of compact operators
is closed in the operator norm, we obtain

‖π(F )− π(Fn)‖ =
∥∥∥∥∫

R2n

(F (q, p)− Fn(q, p))π(q, p) dq dp
∥∥∥∥ ≤ ‖F − Fn‖L1 → 0,

as (n→∞). This completes the proof.

Corollary 2.31. The space of Hilbert-Schmidt oprators HS(L2(Rn)) is a separable
Hilbert space.

Proof. Since L2(Rm) is separable for all m ∈ N, separability of HS(L2(Rn)) is induced
by the isomorphism π : L2(R2n)→ HS(L2(Rn)).

Let us now turn to L1(R2n) and define a group multiplication, which is compatible
with the Schrödinger representation.

Definition 2.32. For F,G ∈ L1(R2n) we define the twisted convolution of F and G at
(q, p) ∈ R2n by

F ]G(q, p) : =
∫

R2n

F (q′, p′)G(q − q′, p− p′)ei/2(p′q−q′p) dq′ dp′

=
∫

R2n

F (q − q′, p− p′)G(q′, p′)ei/2(pq′−qp′) dq′ dp′.

In what follows we reveal the idea behind Definition 2.32. For this purpose we define
the map

F 7→ F 0 : L1(R2n)→ L1(Hn
red)

F 0(t, q, p) := (2π)−1e−itF (q, p). (2.38)

The following proposition now provides facts on twisted convolution as well as the corre-
spondences between usual convolution and twisted convolution, between the integrated
Schrödinger representations on R2n and Hn

red, etc.

Proposition 2.33. Let F,G ∈ L1(R2n) and let π(q, p) := π(0, q, p) be the Schrödinger
representation restricted to R2n. Defining F 0 and G0 as in (2.38), the following hold:

(i) F ]G ∈ L1(R2n) with ‖F ]G‖L1(R2n) ≤ ‖F‖L1(R2n) ‖G‖L1(R2n),

(ii) F 0 ∗G0 = (F ]G)0,

(iii) π(F ) = π(F 0),

(iv) π(F ]G) = π(F )π(G),

Moreover, for F,G ∈ L2(R2n) we obtain
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(v) F ]G ∈ L2(R2n) with ‖F ]G‖L2 ≤ (2π)n ‖F‖L2 ‖G‖L2 .

Proof. Assertion (i) can be proved along the lines of estimate (B.2), which shows that
‖F ∗G‖L1(G) ≤ ‖F‖L1(G) ‖G‖L1(G) for an arbitrary Lie group G.

The identityies (ii) and (iii) are due to the two following straight-forward computa-
tions:

F 0 ∗G0(t, q, p)

= (2π)−2

∫
[0,2π]

∫
R2n

F (q′, p′)e−it
′
G(q − q′, p− p′)e−i(t−t′)+i/2(pq′−qp′) dt′ dq′ dp′

=
e−it

2π

∫
R2n

F (q′, p′)G(q − q′, p− p′)ei/2(p′q−q′p) dq′ dp′ = (F ]G)0(t, q, p).

π(F ) =
∫

R2n

F (q, p)ei(qX+pD) dq dp

∫
[0,2π]

e−it

2π
eit dt

=
∫

R2n

∫
[0,2π]

F 0(t, q, p)ei(qX+pD+tI) dt dq dp = π(F 0).

Keeping in mind that π, being a ∗-representation of L1(Hn
red) (cf. Proposition B.12),

satisfies π(F ∗ G) = π(F )π(G) for all F,G ∈ L1(Hn
red), equation (iv) is now easily

obtained by repeatedly using (ii) and (iii):

π(F ]G) = π((F ]G)0) = π(F 0 ∗G0) = π(F 0)π(G0) = π(F )π(G).

We complete this proof by showing the estimate from (v). For this purpose, recall the
identity ‖π(F )‖HS = ‖KF ‖L2(R2n) = (2π)n ‖F‖L2(R2n) from Theorem 2.30. Using (iv),
an application of the Cauchy-Schwarz inequality finally gives

(2π)n ‖F ]G‖L2 = ‖π(F ]G)‖HS = ‖π(F )π(G)‖HS

=
∥∥∥∥∫

Rn
KF (x, y)KG(y, z) dy

∥∥∥∥
L2(x,z)

≤ ‖KF ‖L2(R2n) ‖KG‖L2(R2n)

= (2π)2n ‖F‖L2 ‖G‖L2 . (2.39)

Hence, we are done.

Remark 2.34. Following the lines of the proof of Proposition B.12, we see that(
L1(R2n), ] , ‖ . ‖L1

)
is a Banach ∗-algebra with ∗-represenation π (cf. Definitions B.4

and B.10). The image of π is included in the subalgebra K(L2(Rn)) ⊆ L(L2(Rn)).
Moreover, we can also turn L2(R2n) into a Banach ∗-algebra: Since it is easily checked

that F 7→ F (− . ,− . ) defines an involution on L2(R2n) that satisfies (i) to (v) from
Definition B.4, we simply alter the algebra norm by setting ‖ . ‖′L2 := (2π)n ‖ . ‖L2 in
order to obtain ‖F]G‖′L2 ≤ ‖F‖′L2 ‖G‖′L2 from equation (2.39).
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Now, combining Theorem 2.30 and Proposition 2.33 (ii), we may state that the inte-
grated Schrödinger representation π is in fact an isometric ∗-isomorphism (cf. Definition
B.9) of L2(R2n) onto HS(L2(Rn)) since compatibility of π with the involution is easily
checked. In fact, π is even a ∗-representation provided it is understood to be composed
with the embedding HS(L2(Rn)) ↪→ L(L2(R2n)). However, is not isometric any longer.

Closing this subsection, we prove a short proposition on how the Schrödinger represen-
tation combines with the integrated Schrödinger representation. This simple technical
statement will be of good use in the following subsections.

Proposition 2.35. Let F ∈ S ′(R2n) and a, b ∈ Rn. For G and H, defined by

G(q, p) = ei(bq−ap)/2F (q − a, p− b), and

H(q, p) = ei(ap−bq)/2F (q − a, p− b), respectively,

we have

π(a, b)π(F ) = π(G) and π(F )π(a, b) = π(H).

Proof. We will first prove the formulas for F ∈ S(R2n), which by the same argument as
is in the proof of Theorem 2.30 then extend to F ∈ S ′(R2n). To begin with, note that
by Proposition A.10 the Bochner integral interchanges with bounded operators, such as
π(a, b) for any a, b ∈ Rn. So, we compute

π(a, b)π(F ) =
∫

R2n

π(a, b)π(q, p)F (q, p) dq dp

=
∫

R2n

π(a+ q, b+ p)ei(bq−ap)/2F (q, p) dq dp,

and the change of coordinates q′ := q + a, p′ := p+ b gives

π(a, b)π(F ) =
∫

R2n

π(q′, p′)ei(bq
′−ap′)/2F (q′, p′) dq′ dp′.

The second formula is proved along the same lines using π(q, p)π(a, b) = ei(ap−bq)/2π(a+
q, b+ p) and the same change of coordinates.

2.2.3. Matrix Coefficients and the Fourier-Wigner Transform

In this subsection we introduce the concept of matrix coefficients of a Lie group rep-
resentation, which has proved to be of utmost importance in various applications of
representation theory. The theorem of Peter and Weyl, just to give one example, states
that for any compact Lie groupG, the space of matrix coefficients of all finite-dimensional
representations of G is dense in C(G).

In our case it is the behavior of the matrix coefficients of the Schrödinger representation
and, subsequently, of any unitary representation of Hn on a Hilbert space H we are
particularly interested in.
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Definition 2.36. Let f, g ∈ L2(Rn) and let π be the Schrödinger representation of Hn

on L2(Rn). Then, we define its matrix coefficient at (f, g) to be the function

M : Hn → C,
(t, q, p) 7→ 〈π(t, q, p)f, g〉 .

Once again, we may omit the variable t since the expression for M(t, q, p) reduces to
eitM(0, q, p). Accordingly, for f, g ∈ L2(Rn), we set

V (f, g)(q, p) : = 〈π(q, p)f, g〉 =
∫

Rn
eiqx+ipq/2f(x+ p)g(x) dx

=
∫

Rn
eiqyf(y + p/2)g(y − p/2) dy, (2.40)

where y := x+ 1
2p. The associated conjugate-linear map (f, g) 7→ V (f, g) has no standard

name, but Folland [6] refers to it as the Fourier-Wigner transform, explicitly:

Definition 2.37. Let f, g ∈ L2(Rn) and let π be the Schrödinger representation on R2n.
We define the Fourier-Wigner transform of f and g to be the map

V (f, g) : R2n → C,
(q, p) 7→ 〈π(q, p)f, g〉 .

For f, g ∈ L2(Rn), V (f, g) is obviously continuous. Moreover, V (f, g) is bounded by
the Cauchy-Schwarz inequality, explicitly ‖V (f, g)‖∞ ≤ ‖f‖L2 ‖g‖L2 .

Our next task is to extend the Fourier-Wigner transform to distributions. We aim at
following a similar road as in case of the integrated representation and rewrite V (f, g)
as

V (f, g)(q, p) = (2π)nF−1
1 (f ⊗ g)(y + p/2, y − p/2).

Also we will be interested in viewing the Fourier-Wigner transform not only as a
conjugate-linear map on L2(Rn)×L2(Rn) but to extend it to a linear map on the tensor
product L2(Rn)⊗L2(Rn), which - of course - is naturally isomorphic to L2(R2n). More
precisely, for F ∈ L2(R2n) we define

Ṽ (F )(q, p) :=
∫

Rn
eiqyF (y + p/2, y − p/2) dy (2.41)

and also call it Fourier-Wigner transform of F . We then have for f, g ∈ L2(Rn)

V (f, g) = Ṽ (f ⊗ g).

Now, we see that also Ṽ is a composition of the measure-preserving coordinate change
(y, p) 7→ (y+p/2, y−p/2) and the inverse partial Fourier transform in the first component
multiplied by (2π)n and so maps S(R2n) isomorphically onto itself.
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Hence, we obtain along the lines of the proof of Proposition 2.30

Proposition 2.38. The Fourier-Wigner transform V maps S(Rn) × S(Rn) to S(Rn)
and extends to a continuous map from S ′(Rn)× S ′(Rn) to S ′(Rn).

Similarly Ṽ extends to a continuous bijection of S ′(R2n) onto itself, which (up to a
factor (2π)n) is unitary on L2(R2n).

The fact that Ṽ (up to a factor (2π)n) is unitary can be translated back to V to yield

Corollary 2.39. The Fourier-Wigner transform V has the property

〈V (f1, g1), V (f2, g2)〉 = (2π)2n 〈f1, f2〉 〈g1, g2〉 (2.42)

for all f1, f2, g1, g2 ∈ L2(Rn).

Identity (2.42) is the key to the following important result.

Proposition 2.40. The Schrödinger representations πh are irreducible for all h ∈ R∗.

Proof. Suppose there exists a non-trivial closed invariant subspace H ⊆ L2(Rn). If f 6=
0 ∈ H and g ∈ H⊥, then we have g ⊥ π(t, q, p)f for all (t, q, p) ∈ Hn and consequently
V (f, g) = 0. Now, Corollary 2.39 gives ‖f‖L2 ‖g‖L2 = 0, whence we conclude g = 0 and,
therefore, H = L2(Rn).

The rest of this subsection is dedicated to establish some technical results, which we
will mainly use to prove the Stone-von Neumann theorem. The integrated representa-
tions of Gaussian functions are of particular interest and importance in this context.

Proposition 2.41. For a, b, c, d ∈ Rn we have

V (π(a, b)f, π(c, d)g)(q, p) = ei(pa+pc+bc−qb−dq−ad)/2V (f, g)(q + a− c, p+ b− d).

Proof. The claim follows from the identity

V
(
π(a, b)f, π(c, d)g

)
(q, p) = 〈π(−c,−d)π(q, p)π(a, b)f, g〉

and the fact that

(0,−c,−d)(0, q, p)(0, a, b) = (0,−c,−d)(ap− qb, q + a, p+ b)
= (ap− qb− (q + a)d+ (p+ b)c, q + a− c, p+ b− d)
= (pa+ pc+ bc− qb− qd− ad, q + a− c, p+ b− d).

Corollary 2.42. The following three identities are special cases of Proposition 2.41.

(i) V
(
π(a, b)f, g

)
(q, p) = ei(pa−qb)/2V (f, g)(q + a, p+ b),

(ii) V (f, π(c, d)g)(q, p) = ei(pc−dq)/2V (f, g)(q − c, p− d),
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(iii) V (π(a, b)f, π(a, b)g)(q, p) = ei(pa−qb)V (f, g)(q, p).

As several times before we have come to point where we would like to replace the
variables (q, p) by an L1(R2n)-integrable function F , i.e., to go from the Schrödinger
representation to the integrated representation. Keeping Proposition A.10 in mind, we
see that the matrix elements of the integrated representation can also be written in terms
of the Fourier-Wigner transform

〈π(F )f, g〉 =
〈∫

R2n

F (q, p)π(q, p)f dq dp, g
〉

=
∫

R2n

F (q, p) 〈π(q, p)f, g〉 dq dp

=
∫

R2n

F (q, p)V (f, g)(q, p) dq dp =
〈
V (f, g), F

〉
(2.43)

for all f, g ∈ L2(Rn).

Remark 2.43. This formula not only shows that π is a faithful representation of
L1(R2n), but it is also the key to an interesting formula for the operators π(Φ), where
Φ is a Fourier-Wigner transform. In fact, it states that the operators π(Φ) are exactly
the operators of rank one on L2(Rn).

Proposition 2.44. Let ϕ,ψ ∈ L2(Rn) and Φ := V (ϕ,ψ). Then, for all f ∈ L2(Rn) we
have

π(Φ)f = (2π)2n 〈f, ϕ〉ψ.

Proof. Using (2.43) and (2.42), we obtain

〈π(Φ)f, g〉 = 〈V (f, g), V (ϕ,ψ)〉 = (2π)2n 〈f, ϕ〉 〈g, ψ〉 = (2π)2n 〈f, ϕ〉 〈ψ, g〉 .

With the help of Proposition 2.44 we may also describe the behavior of the Fourier-
Wigner transform under twisted convolution.

Proposition 2.45. Let ϕ1, ϕ2, ψ1, ψ2 ∈ L2(Rn). Then

V (ϕ1, ψ1) ] V (ϕ2, ψ2) = (2π)2n 〈ψ2, ϕ1〉V (ϕ2, ψ1).

Proof. Let Φj := V (ϕj , ψj) ∈ L2(R2n) for j = 1, 2 and Ψ := V (ϕ2, ψ1) ∈ L2(R2n). Then

π(Φ1 ]Φ2)f = π(Φ1)π(Φ2)f = (2π)2nπ(Φ1) 〈f, ϕ2〉ψ2 = (2π)4n 〈f, ϕ2〉 〈ψ2, ϕ1〉ψ1

= (2π)2n 〈ψ2, ϕ1〉π(Ψ)f.

Recalling that π is unitary up to a constant, hence faithful, on L2(R2n), we have Φ1 ]Φ2 =
(2π)2n 〈ψ2, ϕ1〉Ψ.

The last proposition in this subsection concerns the Fourier-Wigner transform of the
Gaussian function.
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Proposition 2.46. Let ϕ(x) := π−n/4(2π)−n e−x
2/2, a scalar multiple of the Gaussian

probability distribution, let Φ := V (ϕ,ϕ) and Φab := V (ϕ, π(a, b)ϕ). Then, we have

(i) Φ(q, p) = (2π)−2n e−(q2+p2)/4,

(ii) Φab(q, p) = (2π)−2n ei(pa−bq)/2 e−[(q−a)2+(p−b)2]/4,

(iii) π(Φ)π(a, b)π(Φ) = e−(a2+b2)/4π(Φ),

(iv) Φ ]Φab = e−(a2+b2)/4 Φ.

Proof. To begin with, note that for γ(x) := e−x
2/2 we have

(2π)−n/2Fγ(x) =
1

(2π)n/2

∫
Rn
γ(y)e−ixy dy =

1

(2π)n/2

∫
Rn
γ(y)eixy dy

= (2π)n/2F−1γ(x) = e−x
2/2. (2.44)

(i) It follows that the inverse Fourier transformation (2.44) together with the change
of variables x :=

√
2y gives

Φ(q, p) = π−n/2(2π)−2n
∫

Rn
eiqyϕ(y + p/2)ϕ(y − p/2) dy

= (2π)−2nπ−n/2
∫

Rn
eiqye−y

2−p2/4 dy

= (2π)−2nπ−n/2 2−n/2 e−p
2/4

∫
Rn
eixq/

√
2e−x

2/2 dx

= (2π)−2nπ−n/2 2−n/2 e−p
2/4 (2π)nF−1γ(q/

√
2)

= (2π)−2nπ−n/2 2−n/2 e−p
2/4 (2π)n/2 e−q

2/2

= (2π)−2ne−(q2+p2)/4.

(ii) Once we have (i), an application of Corollary 2.42 (ii) gives (ii):

Φab(q, p) = V (ϕ, π(a, b)ϕ) = ei(pa−qb)/2V (ϕ,ϕ)(q − a, p− b)

= ei(pa−qb)/2Φ(q − a, p− b) = (2π)−2n ei(pa−qb)/2 e−[(q−a)2+(p−b)2]/4.

Identity (iii) is due to (i) and repeated use of Proposition 2.44:

π(Φ)π(a, b)π(Φ)f = (2π)2nπ(Φ) 〈f, ϕ〉π(a, b)ϕ = (2π)4n 〈f, ϕ〉 〈π(a, b)ϕ,ϕ〉ϕ

= (2π)2nV (ϕ,ϕ)(a, b) (2π)2n 〈f, ϕ〉ϕ = e−(q2+p2)/4 π(Φ)f.

In order to prove (iv), we observe that π(a, b)π(Φ) = π
(
Φab
)

holds due to Proposition
2.35 and the fact that ei(bq−ap)/2 Φ(q − a, p− b) = Φ−a,−b(q, p). Hence, the identity

π
(
Φ ]Φ−a,−b

)
= π(Φ)π(a, b)π

(
Φ−a,−b

)
= e−(a2+b2)/4 π(Φ)
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and faithfulness of π prove the claim.

2.2.4. The Stone-von Neumann Theorem

The Stone-von Neumann Theorem is a fundamental result also for theoretical physics
since it shows the equivalence of two a priori seemingly different descriptions of quantum
mechanics: Erwin Schrödinger’s wave mechanical formulation and Werner Heisenberg’s
matrix mechanics (which is actually due to Max Born, Pascual Jordan, and Heisenberg).
In essence, both approaches make use of representing the canonical commutator rela-
tions (2.29), that is to say the Heisenberg group itself, on particular infinite-dimensional
Hilbert spaces. Schrödinger’s model was strongly favored by Albert Einstein, while
matrix mechanics, using a (to physicists then) new mathematical language, had been
developed under the direction of Niels Bohr. The two opposing directions, however,
have only been brought together when John von Neumann proved the equivalence of
their approaches. More precisely, the special version of his famous theorem states that
any irreducible unitary representation of Hn that is not trivial on the center, such as
Heisenberg’s, is unique in the sense of being unitarily equivalent to the some Schrödinger
representation of parameter h ∈ R∗. It was indeed Marshall Harvey Stone, who first as-
serted uniqueness, but von Neumann, who gave the complete proof (cf. Rosenberg [5]).
We will prove the slightly more general version, which does not require irreducibility a
priori.

One interesting aspect of the proof we will give is the important role the Gaussian
functions play in such a statement, which may seem far away from classical calculus.

Theorem 2.47 (The Stone-von Neumann Theorem). Let ρ be a unitary representation
of the Heisenberg group Hn on a Hilbert space H, such that ρ(t, 0, 0) = eihtI for some
h ∈ R∗. Then H =

⊕
α∈AHα, where the Hα’s are mutually orthogonal subspaces of

H, each invariant under ρ, such that ρ|Hα is unitarily equivalent to πh for each α. In
particular, if ρ is irreducible then it is equivalent to πh.

Proof. Once again we concentrate on the case h = 1 since the argument in the general
case is identical. The key tools in this proof are the Fourier-Wigner transform and
Gaussian functions as well as their analogues for general unitary representations of Hn

on any Hilbert space H. Treating these objects, we adopt the notation from above:

ϕ(x) := π−n/4(2π)−n e−x
2/2,

ϕab(x) := π(a, b)ϕ(x) = π−n/4(2π)−n eiax+iab/2 e−(x+b)2/2,

Φ := V (ϕ,ϕ),

Φab := V (ϕ, π(a, b)ϕ) = V (ϕ,ϕab) = (2π)−2n ei(pa−bq)/2 e−[(q−a)2+(p−b)2]/4. (2.45)

Let ρ be an arbitrary unitary representation of Hn on a Hilbert space H. In analogy to
(2.30) and Definition 2.24, for q, p ∈ Rn and F ∈ L1(R2n) we define

ρ(q, p) := ρ(0, q, p)
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and

ρ(F ) :=
∫

R2n

F (q, p)ρ(q, p) dq dp.

Analogously it holds true that

ρ(q, p)ρ(s, r) = ρ
(
(sp− rq)/2, q + s, p+ r

)
= ei(sp−rq)/2 ρ(q + s, p+ r),

and also the proofs of Proposition 2.33 (iv) and Proposition 2.35 are literally applicable
to any unitary ρ and F, F1, F2 ∈ L1(R2n):

ρ(F1)ρ(F2) = ρ(F1 ] F2), (2.46)

ρ(a, b)ρ(F ) = ρ(G), where H(q, p) = ei(bq−ap)/2 F (q − a, p− b), (2.47)

ρ(F )ρ(a, b) = ρ(H), where H(q, p) = ei(ap−bq)/2 F (q − a, p− b). (2.48)

Once we know this, we can show that the integrated representation ρ of L1(R2n) is
faithful. For this purpose, let ρ(F ) = 0. For all u, v ∈ H and a, b ∈ Rn we then have

0 = 〈ρ(a, b)ρ(F )ρ(−a,−b)u, v〉H =
∫

R2n

F (q, p) ρ(a, b)ρ(q, p)ρ(−a,−b) 〈u, v〉H dq dp

=
∫

R2n

ei(bq−ap) F (q, p) 〈ρ(q, p)u, v〉H dq dp,

since (0, a, b)(0, q, p)(0,−a,−b) = (bq − ap, q, p). The Fourier inversion theorem now
gives F (q, p) 〈ρ(q, p)u, v〉H = 0 for almost all q, p ∈ Rn, hence F = 0 a.e. since u, v ∈ H
were arbitrary.

Now, the same line of arguments as in the proof of Proposition 2.46 (iii), can be
applied to the present case to obtain

ρ
(
Φ ]Φ−a,−b

)
= e−(a2+b2)/4 ρ(Φ) = ρ(Φ)ρ(a, b)ρ

(
Φ−a,−b

)
. (2.49)

Now, setting a = b = 0, it follows that ρ(Φ)2 = ρ(Φ), and since Φ is even and real, we
conclude the operator ρ(Φ) is also self-adjoint:

〈ρ(Φ)u, v〉H =
〈∫

R2n

Φ(q, p)ρ(q, p)u dq dp, v
〉
H

=
∫

R2n

Φ(q, p) 〈u, ρ(−q,−p)v〉H dq dp

=
∫

R2n

Φ(−q′,−p′)
〈
u, ρ(q′, p′)v

〉
H
dq′ dp′

=
〈
u,

∫
R2n

Φ(q′, p′)ρ(q′, p′)v dq′ dp′
〉
H

= 〈u, ρ(Φ)v〉H .

Hence ρ(Φ) is an orthogonal projection, which is nonzero provided Φ 6= 0.
Next we show that H can be written as the direct sum of invariant spaces. To this

end, let u, v ∈ ran(ρ(Φ)), i.e., ρ(Φ)u = u and ρ(Φ)v = v, respectively. This leads to the
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computation

〈ρ(q, p)u, ρ(s, r)v〉H = 〈ρ(q, p)ρ(Φ)u, ρ(s, r)ρ(Φ)v〉H = 〈ρ(Φ)ρ(−s,−r)ρ(q, p)ρ(Φ)u, v〉H
= ei(ps−qr)/2 〈ρ(Φ)ρ(q − s, p− r)ρ(Φ)u, v〉H
= ei(ps−qr)/2 e−[(q−s)2+(p−r)2]/4 〈u, v〉H , (2.50)

where we use (2.49) in the last identity. Hence, defining Hα to be the closed linear span
of {ρ(q, p)vα | q, p ∈ Rn} for any orthonormal basis (vα)α of ran(ρ(Φ)), we immediately
see that Hα ⊥ Hβ for α 6= β, and, by definition, each of these spaces is invariant under
ρ. So, the space N := (

⊕
αHα)⊥ is also invariant under ρ, thus ρ|N defines a unitary

representation of Hn on N . But since ρ(Φ)|N = 0 and ρ|N is also faithful on L1(R2n),
the fact that Φ 6= 0 implies N = 0. It follows that H = (

⊕
αHα).

Finally we have to prove unitary equivalence of π and ρ on each Hα. To do so, we
define vqp := ρ(q, p)vα for any fixed index α ∈ A. Using (2.45) and (2.50), we conclude
that

〈vqp, vsr〉H = (2π)2n 〈ϕqp, ϕsr〉

for all p, q, r, s ∈ Rn. Now, let u ∈ Hα, then u =
∑

j,k αjkv
qjpk for some coefficients αjk.

If we map u to f :=
∑

j,k αjkϕ
qjpk , then we obtain

‖u‖H = (2π)2n ‖f‖L2(Rn)

and we may extend this map to an isometry (up to the factor (2π)2n)

U : Hα → L2(Rn),

which by construction intertwines ρ|Hα and π, i.e., π = Uρ|HαU∗ (cf. Definition 1.44
(viii)).

Remark 2.48. The Stone-von Neumann theorem has been notably generalized by G.
Mackey (cf. Rosenberg [5], § 3.), and indeed in many presentations the Stone-von Neu-
mann theorem is deduced from Mackey’s imprimitivity theorem. Nevertheless, it is still
presented in its original version in various books due to the elegant methods involved in
its proof and the more explicit character.

The last theorem in this section is a classification of all irreducible unitary represen-
tations of Hn.

Theorem 2.49. Every irreducible unitary representation ρ of Hn on a Hilbert space H
is unitarily equivalent to one and only one of the following representations:

(a) σ(a,b) : (t, q, p) 7→ ei(aq+bp), a, b ∈ Rn, acting on C,

(b) πh, h ∈ R∗, acting on L2(Rn).
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Proof. To begin with, recall that Z(Hn) denotes the center of Hn, and by Remark 2.9
we have Z(Hn) = Z = {(t, 0, 0) | t ∈ R}. Now, if g1 ∈ Z, then ρ(g1) commutes with
all ρ(g2), g2 ∈ Hn, and by Schur’s lemma, more precisely by Corollary C.17, we have
ρ(Z) ⊆ {eisI | s ∈ [0, 2π]}. Hence, ρ(t, 0, 0) = eihtI for some h ∈ R. Now, if h 6= 0, the
Stone-von Neumann theorem asserts that ρ is equivalent to some πh. Otherwise if h = 0,
Z ⊆ ker(ρ) and ρ factors through Hn/Z, which is isomorphic to R2n. Again by Corollary
C.17 any irreducible representation ρ of R2n satisfies ρ(R2n) ⊆ T = {eit | t ∈ [0, 2π]}.
Hence ρ must be of the form (q, p) 7→ ei(aq+bp) for some a, b ∈ Rn. This completes the
proof.

Unitary equivalence clearly defines an equivalence relation on the set of irreducible
unitary representations of Hn, which motivates the next definition.

Definition 2.50. Let Ĥn be the set of equivalence classes of irreducible unitary repre-
sentations of Hn. This set is called the unitary dual (or dual set) of Hn.

Remark 2.51. The set Ĥn can be equipped with a topology (cf. Kirillov [12], § 3. 4. 5,
Definition 3) such that R∗ and R2n with the usual topologies are homeomorphic to the
topological subspaces Ĥn

π := {[πh] ∈ Ĥn | h ∈ R∗} and Ĥn
σ := {[σ(a,b)] ∈ Ĥn | a, b ∈ Rn},

respectively. The topological space Ĥn is in fact locally compact and second countable
but fails to be Hausdorff. Identifying Ĥn with R∗ ∪ R2n, we may transfer an existing
Borel measure µ on R∗ ∪ R2n to Ĥn. In Subsection 2.2.5 we will make use of such a
measure, which in particular assigns measure zero to Ĥn

σ. Hence, in the following it will
most of the time be sufficient to only deal with the case [ρ] ∈ Ĥn

π.

2.2.5. The Group Fourier Transform

Recalling that the Fourier transform of f ∈ L1(Rn) at ξ ∈ Rn is defined by the integral

f̂(ξ) :=
∫

Rn
e−ix·ξf(x) dx, (2.51)

we observe that it involves the unitary representation

πξ : Rn → L(C),

x 7→ (λ 7→ eix·ξ · λ).

(Note that by Corollary C.17 the representations {πξ}ξ∈Rn are in fact the only irreducible
unitary representations of Rn.) Using this notation, we may rewrite (2.51) as

f̂(ξ) =
∫

Rn
f(x)(πξ(x))∗ dx =

∫
Rn
f(x)πξ(−x) dx. (2.52)

Equation (2.52) now motivates the definition of an analogous transform for the Heisen-
berg group Hn.
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Definition 2.52. Let ρ be an irreducible unitary representation of Hn on some Hilbert
space H. For f ∈ L1(Hn), we define its group Fourier transform at ρ to be the map

f̂(ρ) : H → H,

u 7→
∫
Hn

f(g)(ρ(g))∗u dg =
∫
Hn

f(g)ρ(g−1)u dg. (2.53)

Note that due to linearity of the defining integral, a Bochner integral (cf. Appendix
A), f̂(ρ) defines a linear operator on H. Moreover, recall that by Theorem 2.49 ρ is
unitarily equivalent to some uniquely determined Schrödinger representation πh, h ∈ R∗.
The following proposition now states that unitary equivalence is in fact inherited by the
the group Fourier transform.

Proposition 2.53. Let ρ be an irreducible unitary representation of Hn on some Hilbert
space H and let πh be the corresponding unitarily equivalent representation with equiv-
alence U : H → L2(Rn). Furthermore, let f ∈ L1(Hn). Then the corresponding group
Fourier transforms defined by (2.53) are unitarily equivalent in the sense that

Uf̂(ρ)U∗ = f̂(πh). (2.54)

Proof. Let ϕ,ψ ∈ H̃. Repeated use of Proposition A.10 yields〈
Uf̂(ρ)U∗ϕ,ψ

〉
=
〈
U

∫
Hn

f(g)ρ(g)U∗ϕ dg, ψ
〉

=
〈∫

Hn

f(g)Uρ(g)U∗ϕdg, ψ
〉

=
∫
Hn

f(g) 〈Uρ(g)U∗ϕ,ψ〉 dg =
∫
Hn

f(g) 〈πh(g)ϕ,ψ〉 dg

=
〈∫

Hn

f(g)πh(g)ϕdg, ψ
〉

=
〈
f̂(πh)ϕ,ψ

〉
.

Since ϕ and ψ were arbitrary, we are done.

In the following we identity the f̂(ρ)’s with their corresponding f̂(πh)’s since all the
results on the group Fourier transform we shall prove in this subsection carry over to
the ”Schrödinger”-case using (2.54). For the sake of convenience we shall write f̂(h) for
f̂(πh).

Consequently, we identify Ĥn with R∗ and proceed with the understanding that the
group Fourier transform of f ∈ L1(Hn) at h ∈ R∗ is given by the operator

f̂(h) : L2(Rn)→ L2(Rn),

ϕ 7→
∫
Hn

f(t, q, p)πh(−t,−q,−p)ϕdt dq dp. (2.55)

The group Fourier transform can therefore be viewed as a map from R∗ into Lin(L2(Rn)).

Remark 2.54. Recall from the proof of Proposition 2.53 that for ϕ,ψ ∈ L2(Rn) we
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obtain 〈
f̂(h)ϕ,ψ

〉
=
∫
Hn

f(g) 〈πh(g)ϕ,ψ〉 dg, (2.56)

which some texts use as a weak definition of f̂(h) in order to avoid Bochner integration.
Note that identity (2.56) is particularly interesting since unitarity of each πh(g) gives
|〈πhϕ,ψ〉| ≤ ‖ϕ‖L2(Rn) ‖ψ‖L2(Rn) and therefore∣∣∣〈f̂(h)ϕ,ψ

〉∣∣∣ ≤ ‖f‖L1(Hn) ‖u‖L2(Rn) ‖ψ‖L2(Rn) . (2.57)

Hence, we obtain boundedness of f̂(h) on L2(Rn), with ‖f̂(h)‖ ≤ ‖f‖L1(Hn).

In fact there is much more to say about f̂(h) in case f ∈ L1(Hn) ∩ L2(Hn).

Proposition 2.55. Let f ∈ L1(Hn) ∩ L2(Hn) and let h ∈ R∗. Then, f̂(h) is a Hilbert-
Schmidt operator, thus, in particular, compact on L2(Rn) with

‖f̂(h)‖2HS = (2π)2n |h|−n
∫

R2n

|f̂(h, q, p)|2 dq dp.

Recall the following facts about Hilbert-Schmidt operators we have collected in § 2.2.2
following Definition 2.28: the set of all Hilbert-Schmidt operators on some Hilbert space
H, denoted by HS(H), is a Hilbert space itself with scalar product 〈A,B〉HS := tr (B∗A)
for A,B ∈ HS(H). Furthermore, an operator on L2(Rn) is Hilbert-Schmidt if and only
if it is an integral operator with kernel K ∈ L2(R2n). We shall use this characterization
to prove Proposition 2.55.

Proof. Let h ∈ R∗. In order to prove that f̂(h) is Hilbert-Schmidt, we must find some
Kh
f ∈ L2(R2n) such that for all ϕ ∈ L2(Rn) we have

f̂(h)ϕ(x) =
∫

R2n

Kh
f (x, y)ϕ(y) dy.

Thus, let ϕ be an arbitrary vector in L2(Rn). We compute

f̂(h)ϕ(x) =
∫
Hn

f(t, q, p)πh(−t,−q,−p)ϕ(x) dt dq dp

=
∫
Hn

e−iht−iqx−ihpq/2f(t, q, p)ϕ(x− hp) dt dq dp

= |h|−n
∫
Hn

e−iht−iq(x+y)/2f(t, q, (x− y)/h) dt dq ϕ(y) dy. (2.58)
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Hence, we may explicitly read off from (2.58) that

Kh
f (x, y) = |h|−n

∫
Rn+1

e−iht−iq(x+y)/2f(t, q, (x− y)/h) dt dq (2.59)

= |h|−n F1,2 f(h, (x+ y)/2, (x− y)/h), (2.60)

Now, Kh
f is clearly in L2(R2n) since f ∈ L2(Hn) ∼= L2(R)×L2(R2n) and both the change

of coordinates and the Fourier transform are isomorphisms on L2.
Finally, we compute the Hilbert-Schmidt norm of f̂(h). To this end, note that by

(2.37) the latter is determined by ‖f̂(h)‖HS = ‖Kh
f ‖L2(R)2n . Thus, identity (2.60) leads

to

‖f̂(h)‖2HS = |h|−2n
∫

R2n

|F1,2 f(h, (x+ y)/2, (x− y)/h)|2 dx dy

= |h|−n
∫

R2n

|F1,2 f(h, q, p)|2 dq dp

= (2π)2n |h|−n
∫

R2n

|F1f(h, q, p)|2 dq dp, (2.61)

where we have applied a linear coordinate transformation with determinant |h|n followed
by the standard Plancherel formula for L2(R2n). This completes the proof.

Collecting the facts, we have seen that the group Fourier transform of f ∈ L1(Hn) is an
operator-valued map on R∗ with values in L(L2(R2n)), and in particular in HS(L2(R2n))
provided f ∈ L1(Hn) ∩ L2(Hn). The following theorem now states the existence of
a measure µ on R∗ such that the map f̂ : R∗ → HS(L2(Rn)) not is only Bochner-
measurable (cf. Definition A.1) but also square-integrable (cf. Definition A.16) with
respect to the Hilbert-Schmidt norm ‖ . ‖HS =

√
〈 . , . 〉HS . It furthermore establishes

an analogue to the Plancherel identity we know from the ordinary Fourier transform on
Rn.

Theorem 2.56. Let the measure µ on R∗ be defined by dµ := (2π)−(n+1) |h|n dh. Then,
the group Fourier transform f 7→ f̂ restricted to L1(Hn) ∩ L2(Hn) extends to a unitary
isomorphism F of L2(Hn) onto L2(R∗, HS(L2(Rn));µ). In particular, we have

‖f‖2L2(Hn) =
∫

R∗
‖F(f)(h)‖2HS dµ(h)

for all f ∈ L2(Hn).

Proof. From Definition 2.52 it is clear that f 7→ f̂ is linear on L1(Hn). In order to show
that it is isometric for all f ∈ L1(Hn) ∩ L2(Hn), we first integrate identity (2.61) with
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respect to h. An application of the Plancherel theorem for L2(R) then gives

(2π)−2n

∫
R
‖f̂(h)‖2HS |h|

n dh =
∫

R

∫
R2n

|F1f(h, q, p)|2 dq dp dh

= (2π)
∫
Hn

|f(h, q, p)|2 dq dp dh,

or equivalently the desired isometry

‖f‖2L2(Hn) = ‖f̂‖2L2(R∗,HS(L2(Rn));µ). (2.62)

Note that we have only shown so far that h 7→ ‖f̂(h)‖HS is square-integrable with
respect to µ. But since HS(L2(Rn)) is a separable Hilbert space (cf. Corollary 2.31),
h 7→ f̂(h) is Bochner-measurable, and thus in L2(R∗, HS(L2(Rn));µ), due to Proposition
A.21.

Summarizing the facts, we have seen that the group Fourier transform f 7→ f̂ is
an isometric linear map from the dense subspace L1(Hn) ∩ L2(Hn) of L2(Hn) into
L2(R∗, HS(L2(Rn));µ). So, we may in fact extend the group Fourier transform to an
isometric operator F defined on the whole space L2(Hn).

The mapping F is furthermore onto: By reading the above manipulations backwards,
given f ∈ L2(R∗, HS(L2(Rn));µ), we construct Ff ∈ L2(Hn) such that F(Ff ) = f .
In fact, f corresponds to a family of Hilbert-Schmidt operators with L2(R2n)-kernels
{Kh

f }h∈R∗ . Now, for h ∈ R∗ we set

Ff (h, q, p) := |h|nF−1
1,2Kf (h, (2q + hp)/2, (2q − hp)/2).

Then, for ϕ ∈ L2(Rn) identity (2.60) leads to

F(Ff )(h)ϕ(x) =
∫

Rn
Kh
Ff

(x, y)ϕ(y) dy =
∫
Rn
|h|−nF1,2Ff (h,

x+ y

2
,
x− y
h

)ϕ(y) dy

=
∫

Rn
Kf (h,

2x+y
2 + hx−yh

2
,
2x+y

2 − h
x−y
h

2
)ϕ(y) dy

=
∫

Rn
Kf (h, x, y)ϕ(y) dy = f(h)ϕ(x).

Thus, F(Ff ) = f , and we are done.

We have also an inversion theorem for the group Fourier transform with an explicit
formula for the inverse transform.

Theorem 2.57. For all f ∈ S(Hn), the inverse Fourier transform F−1 : F(f) = f̂ 7→ f
is given by the formula

f(t, q, p) =
∫

R∗
tr
(
f̂(h)πh(t, q, p)

)
dµ(h). (2.63)
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Proof. As in the proof of Proposition 2.55 we will show that tr
(
f̂(h)πh(t, q, p)

)
possesses

an integral operator representation, which we subsequently use to prove identity (2.63).
To begin with, we compute

f̂(h)πh(t, q, p) =
∫
Hn

f(t′, q′, p′)πh(−t′,−q′,−p′)πh(t, q, p) dt′ dq′ dp′

=
∫
Hn

f(t′, q′, p′)πh(t− t′ + (qp′ − pq′)/2, q − q′, p− p′) dt′ dq′ dp′

=
∫
Hn

eih(qp̃−pq̃)/2f(t̃+ t, q̃ + q, p̃+ p)πh(−t̃,−q̃,−p̃) dt̃ dq̃ dp̃,

where t̃ := t′− t, q̃ := q′− q, and p̃ := p′− p. Hence, we obtain f̂(h)πh(t, q, p) = ĝ(h) for
the Schwartz function g defined by

g(t̃, q̃, p̃) := eih(qp̃−pq̃)/2 f(t̃+ t, q̃ + q, p̃+ p).

Consequently, using the integral operator representation from (2.59), we may express
the integral kernel Kh

g of ĝ(h) in terms of the integral

Kh
g (x, y)

= |h|−n
∫

Rn+1

e−iht̃−iq̃(x+y)/2ei[q(x−y)−hpq̃]/2f(t̃+ t, q̃ + q, h−1(x− y) + p) dt̃ dq̃.

Note that ĝ(h) is trace class with tr (ĝ(h)) =
∫

Rn K
h
g (x, x) dx (cf. Kirillov [12], Remark

3 in Subsection IV. 2. 2). The latter formula leads to∫
Rn
Kh
g (x, x) dx = |h|−n

∫
Hn

e−iht̃−iq̃xe−ihpq̃/2f(t̃+ t, q̃ + q, p) dt̃ dq̃ dx

= |h|−n
∫
Hn

e−ih(t′−t)−i(q′−q)xe−ihp(q
′−q)/2f(t′, q′, p) dx dq′ dt′

= (2π)n |h|−n
∫

Rn+1

e−ih(t′−t)e−ihp(q
′−q)/2δ(q′ − q)f(t′, q′, p) dq′ dt′

= (2π)2n |h|−n
∫

R
e−ih(t′−t)f(t′, q, p) dt′

= (2π)2n |h|−n eihtF1f(h, q, p),

where we have twice used the Fourier inversion theorem (for Rn). Another application
finally gives

f(t, q, p) = (2π)−1
∫

R
eihtF1f(h, q, p) dh =

∫
R

tr (ĝ(h)) (2π)−(2n+1) |h|n dh,

and thus the desired result.

We close this subsection with the observation that convolution under the group Fourier
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transform behaves as under the ordinary Fourier transform on Hn. That is, for f1, f2 ∈
L1(Hn) we have

f̂1 ∗ f2(h) = f̂1(h) f̂2(h). (2.64)

In order to prove this, note that Proposition B.12 implies that the integrated Schrödinger
representation satisfies πh(f1 ∗ f2) = πh(f1)πh(f2) for all f1, f2 ∈ L1(Hn). Recalling
∆Hn = 1 (cf. Remark 2.10) and denoting f̃ := g 7→ f(g−1) for f ∈ L1(Hn), identity
(1.16) then yields

f̂1 ∗ f2(h) =
∫
Hn

(f1 ∗ f2)(g)πh(g−1) dg =
∫
Hn

(f1 ∗ f2)(g−1)πh(g) dg

= πh(f̃1 ∗ f̃2) = πh(f̃1)πh(f̃2) = f̂1(h) f̂2(h),

which proves the claim.
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A.1. Motivation

The topic Banach space-valued functions is an essential one throughout the present text.
Since it turns out to be particularly important to integrate these functions, we have to
use an appropriate notion of integrability. The concept of our choice is the one due
to S. Bochner. His approach can be viewed, in a certain sense, as a straightforward
generalization of the Lebesgue integral, which we assume the reader to be familiar with.
We will see in the following that the basic definitions are closely related to the corre-
sponding definitions and characterizations from Lebesgue’s theory. As a matter of fact,
the Bochner integral agrees with Lebesgue’s integral in case the functions are complex-
valued. However, some important results as, e.g., the Radon-Nikodym theorem, fail for
generic Banach spaces. The interested reader is referred to Arendt et al. [2], § 1. 2.

A.2. Measure Space

In order to give proper definitions of measurability and integrability we have to say a
few words about requirements on our measure space.

In view of integrating on (second countable) Lie groups (cf. § 1.2.1), we will always
suppose that our measure space (Ω,A, µ) is a locally compact Hausdorff space equipped
with a Borel sigma algebra A and a regular Borel measure µ. For details on topological
spaces we refer to L. A. Steen and J. A. Seebach [18], and to Michael E. Taylor [19]
for details in measure theory. One of our main tools for integration, namely Pettis’s
characterization of Bochner measurable functions, requires that our measure space is σ-
finite, i.e., it can be written as a countable union of sets of finite measure. Now, by second
countability we are even given the existence of a sequence of compact subsets {Kn}n of
Ω such that Kn ⊆ K◦n+1 for each n, and Ω =

⋃∞
n=0Kn =

⋃∞
n=0K

◦
n (cf. Aliprantis and

Border [1], Lemma 2. 76 and Corollary 2. 77). We will refer to this type of sequence as
a fundamental sequence for Ω. By definition of regularity of µ, all compact subsets are
of finite measure, which implies that Ω is σ-finite.

A.3. Measurability

In accordance with the notation of our main references J. Diestel and J. J. Uhl, [4], and
W. Arendt et al. [2], X will always denote a Banach space over C and X∗ its dual space.

Definition A.1. A function f : Ω→ X is called
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(i) simple if it is of the form f =
∑n

i=1 xi ·χEi for some n ∈ N, xi ∈ X, and χEi being
the characteristic function of Ei ∈ A with µ(Ei) <∞.

(ii) Bochner measurable (with respect to µ) if there exists a sequence of simple functions
(gn)n such that f(ω) = limn→∞ gn(ω) for (µ-)almost every ω ∈ Ω.

Remark A.2. Note that some well-known properties from the case X = C continue
to hold for arbitrary Banach spaces: if f, g : Ω → X and h : Ω → C are Bochner
measurable, then f + g and h · f are also Bochner measurable, and for a continuous map
k from X into another Banach space Y , k ◦ f : I → Y is also Bochner measurable. In
particular, ‖f‖ is µ-measurable.

In fact, measurability is often checked by an equivalent criterion due to Pettis, which
involves a few new notions.

Definition A.3. We say f : Ω→ X is

(i) countably valued if there exists a countable partition {En}n of Ω such that f is
constant on each En.

(ii) almost (or µ-essentially) separably valued if there exists a null set E0 ⊆ Ω such
that f(Ω \ E0) is separable or equivalently, f(Ω \ E0) is contained in a separable
closed subspace of X.

(iii) weakly measurable if x∗ ◦ f : Ω→ C is µ-measurable for all x∗ ∈ X∗.

Theorem A.4 (Pettis’s Theorem). A function f : Ω→ X is Bochner measurable if and
only if it is weakly measurable and almost separably valued.

Proof. By Definition A.1 there exist simple functions gn and a null set E0 such that
gn → f on Ω \ E0. Note that for each x∗ ∈ X∗, the scalar functions x∗ ◦ gn are also
simple and converge pointwise to x∗ ◦ f on Ω \E0. Hence, f is weakly measurable. The
implication is now established by observing that

⋃
n gn(Ω \ E0) =: D is a countable set

and f(Ω \ E0) ⊆ D, hence f is almost separably valued.
The idea behind the proof of the converse statement is that µ-essential separability

of f(Ω) implies that we can approximate f by countably valued functions which in turn
can be cut off to simple functions using a fundamental sequence of compact subsets. By
assumption there exists a null set E0 ∈ A such that f is separably valued on Ω \E0, and
for the sake of convenience we replace X by the smallest closed subspace which contains
f(Ω \ E0). Now, let {xn}n be a countable dense subset of X. By the Hahn-Banach
theorem, there exist unit vectors x∗n ∈ X∗ with x∗n(xn) = ‖xn‖. Hence, for each x ∈ X
and each ε > 0 there exists xk such that ‖x− xk‖ < ε. This gives

sup
n
|x∗n(x)| ≤ ‖x‖ ≤ ‖xk‖ + ε = |x∗k(xk)|+ ε ≤ |x∗k(x− xk)|+ |x∗k(x)|+ ε

≤ sup
n
|x∗n(x)|+ 2ε.
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Thus, we have
‖x‖ = sup

n
|x∗n(x)|

for all x ∈ X. By assumption each |x∗n(f( . )− x)| is µ-measurable for all x ∈ X, and so
is supn |x∗n(f( . )− x)| = ‖f( . )− x‖ .

For fixed ε > 0 and n ∈ N set

An,ε := {ω ∈ Ω \ E0 | ‖f(ω)− xn‖ < ε}.

By the above these sets are measurable and Ω =
⋃
nAn,ε. Furthermore, we observe that

the sequence of disjoint sets E1,ε := A1,ε and En,ε := An,ε \
⋃
k<nAk,ε, n ≥ 2, are in

A, and
⊔∞
n=1En,ε = Ω. By hε :=

∑∞
n=1 xnχEn,ε we define measurable, countably valued

functions which approximate f µ-almost everywhere: For ω ∈ Ω \E0 there exists n ∈ N
such that ω ∈ En,ε. Thus, we have

‖f(ω)− hε(ω)‖ < ε ∀ω ∈ Ω \ E0.

In order to prove Bochner measurability we now find a way to cut off all but finitely
many summands in the representations of the hε without losing pointwise convergence
a.e. To this end, let (Kj)j be a fundamental sequence of compact subsets of Ω and let
n ∈ N. Then by regularity of µ and compactness of Kn there exists kn ∈ N such that by
setting Hn := Kn ∩

⋃kn
i=1Ei,2−n we obtain µ(Kn \Hn) < 2−n. Next set gn := h2−nχHn ,

which is obviously simple, and observe that ω ∈
⋂∞
n=kHn implies

‖f(ω)− gn(ω)‖ = ‖f(ω)− h2−n(ω)‖ < 2−n,

for all n ≥ k, hence gn(ω)→ f(ω) if ω ∈
⋃∞
k=1

⋂∞
n=kHn. Since for each k ≥ j we have

µ

(
Kj \

∞⋂
n=k

Hn

)
≤
∞∑
n=k

µ(Kn \Hn) < 2−k+1,

it follows that

µ

(
Kj \

∞⋃
k=1

∞⋂
n=k

Hn

)
= µ

( ∞⋂
k=1

(Kj \
∞⋂
n=k

Hn)

)
= 0

for each j ∈ N. Thus, we obtain limn→∞ hn(ω) = f(ω) for almost every ω ∈ Ω.

Corollary A.5. Let f : Ω→ X. Then the following statements hold:

(i) If X is separable, the f is measurable if and only if it is weakly measurable.

(ii) If f is continuous, then it is measurable.

(iii) If fn : Ω → X are measurable functions and fn → f pointwise a.e., then f is
measurable.

67



A. The Bochner Integral

(vi) The function is measurable if and only if it is the uniform limit almost everywhere
of a sequence of measurable, countably valued functions.

Proof. (i) is immediate by Theorem A.4.
(ii) If f is continuous, then x∗ ◦ f is continuous, hence µ-measurable for all x∗ ∈ X∗,

i.e., weakly measurable. Recall that second countability implies separability and choose
a countable dense subset E of Ω. Then by continuity of f , f(E) is a countable dense
subset in f(Ω). Hence, by Theorem A.4 f is Bochner measurable.

(iii) In order to prove measurability, note that the functions x∗ ◦ fn are µ-measurable
for all n ∈ N. Since their pointwise limit x∗ ◦ f is also µ-measurable, f is weakly
measurable. Furthermore, there exist null sets En such that fn(Ω\En) is separable. We
define E0 :=

⋃∞
n=1En. Then µ(E0) = 0 and ∆ :=

⋃∞
n=1 fn(Ω \ E0) is separable. Hence,

the smallest closed subspace containing ∆ is separable and includes f(Ω \E0), thus f is
almost separably valued, and equivalently measurable by Theorem A.4.

(iv) Both implications were shown in the proof Theorem A.4.

A.4. Integrability

For a simple function g : Ω→ X, g =
∑n

i=1 xiχEi , we define its integral by∫
Ω
g(ω) dµ(ω) :=

n∑
i=1

xiµ(Ei) ∈ X.

As in the scalar-valued case it is routine to verify that the definition is independent of
the representation g =

∑n
i=1 xiχEi and that the integral is linear in g.

Next we define integrability for arbitrary measurable functions.

Definition A.6. A function f : Ω→ X is called Bochner integrable if there exist simple
functions gn such that gn → f pointwise a.e., and limn→∞

∫
Ω ‖f(ω)− gn(ω)‖ dµ(ω) = 0.

If f is Bochner integrable, then the Bochner integral of f on Ω is∫
Ω
f dµ :=

∫
Ω
f(ω) dµ(ω) := lim

n→∞

∫
Ω
gn(ω) dµ(ω).

Remark A.7. It is easy to see that the definition is independent of the choice of
(gn)n: Let (hn)n be another sequence satisfying the above condition and denote by∫ g

Ω f dµ and
∫ h

Ω f dµ the corresponding limits. Then for each ε > 0 there exists N ∈ N
such that

∫
Ω ‖f − gn‖ dµ < ε and

∫
Ω ‖f − hm‖ dµ < ε for all n,m ≥ N , which gives∫

Ω ‖gn − hm‖ dµ < 2ε. Hence,
(∫

Ω g1 dµ,
∫

Ω h1 dµ,
∫

Ω g2 dµ, . . .
)

is Cauchy in the com-
plete space X with convergent subsequence

(∫
Ω gn dµ

)
n
, so the whole sequence converges

to
∫ g

Ω f dµ and the two integrals of f agree.
Furthermore, we observe the following facts: The integral

∫
Ω f dµ lies in the closed

linear span of {f(ω) | ω ∈ Ω}. The set of all Bochner integrable functions from Ω to X
form a linear space denoted by L(Ω, X, dµ) and the Bochner integral is a linear mapping
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from L(Ω, X, dµ) into X. In case X = C, the definitions of Bochner integrability and
integrals agree with those of Lebesgue integration theory.

It is one of the great virtues of the Bochner integral that the class of Bochner integrable
functions is very easily characterized.

Theorem A.8 (Bochner). A function f : Ω→ X is Bochner integrable if and only if it
is Bochner measurable and ‖f‖ is µ-integrable. If f is Bochner integrable, we have∥∥∥∥∫

Ω
f(ω) dµ(ω)

∥∥∥∥ ≤ ∫
Ω
‖f(ω)‖ dµ(ω). (A.1)

Proof. Note that for Bochner integrable f there exists an approximating sequence of sim-
ple functions gn and so f and ‖f‖ are measurable in the respective sense. Furthermore,
we obtain integrability of ‖f‖ by∫

Ω
‖f(ω)‖ dµ(ω) ≤

∫
Ω
‖gn(ω)‖ dµ(ω) +

∫
Ω
‖f(ω)− gn(ω)‖ dµ(ω)

and using the estimate∫
Ω
|‖f(ω)‖ − ‖gn(ω)‖| dµ(ω) ≤

∫
Ω
‖f(ω)− gn(ω)‖ dµ(ω)→ 0,

as n→∞. Finally we establish estimate (A.1) via∥∥∥∥∫
Ω
f(ω) dµ(ω)

∥∥∥∥ = lim
n→∞

∥∥∥∥∫
Ω
gn(ω) dµ(ω)

∥∥∥∥ ≤ lim
n→∞

∫
Ω
‖gn(ω)‖ dµ(ω)

=
∫

Ω
‖f(ω)‖ dµ(ω).

Conversely, since f is measurable, let (hn)n be a sequence of simple functions approxi-
mating f pointwise on Ω\E0 for some null set E0. We define another sequence of simple
functions by

gn(ω) :=

{
hn(ω) if ‖hn(ω)‖ ≤ ‖f(ω)‖ (1 +

1
n

)

0 otherwise.

Then ‖gn(ω)‖ ≤ ‖f(ω)‖ (1+ 1
n) and limn→∞ ‖f(ω)− gn(ω)‖ = 0 for all ω ∈ Ω\E0. Note

that ‖f − gn‖ is µ-measurable, and even µ-integrable since ‖f(ω)− gn(ω)‖ < 3 ‖f‖ holds
for almost every ω. Finally, we apply Lebesgue’s Dominated Convergence Theorem (in
the scalar case) to obtain

lim
n→∞

∫
Ω
‖f(ω)− gn(ω)‖ dµ(ω) = 0,

thus f is Bochner integrable.

Examples A.9. (i) For X = L∞((0, 1)) we define a function f : (0, 1)→ X by f(t) :=
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χ(0,t). Then, by Theorem A.4 f is not Bochner measurable with respect to the Lebesgue
measure dt hence not Bochner integrable since it is not almost separably valued: Indeed
by the fact that ‖f(t)− f(s)‖ = 1 for all t 6= s, f((0, 1)) is not separable.

(ii) Let X be the space c0(N) := {x = (xn)n ∈ CN | limn→∞ xn = 0} equipped
with the norm ‖x‖ := supn |xn|. Note that by isometric isomorphy we may identify
X∗ with `1(N) (cf. Yosida [23], Chapter 9 Example 1). Now, define f : [0, 1] → c0(N)
by f(t) := (fn(t))n, where fn(t) := nχ(0, 1

n
](t). For each x∗ = (an)n ∈ `1(N), x∗ ◦ f

is Lebesgue measurable on [0, 1] since it is given by t 7→
∑∞

n=1 annχ(0, 1
n

](t). Hence,
separability of c0(N) together with Corollary A.5 (i) gives Bochner measurability of f .
(Note that the elements of c0 can be approximated by finite sequences of rationals, and
there exist only countably many of them.) Moreover, we observe that∫ 1

0
|x∗(f(t))| dt ≤

∞∑
n=1

|an| = ‖x∗‖`1 < ∞.

However, since ‖f(t)‖ = n for t ∈ ( 1
n+1 ,

1
n ], we have∫ 1

0
‖f(t)‖ dt =

∞∑
n=1

n ·
(

1
n
− 1
n+ 1

)
=
∞∑
n=1

1
n+ 1

= +∞.

Hence, f is not Bochner integrable.

A.5. Main Results for the Bochner Integral

The first half of this section is devoted to the behavior of the Bochner integral under
linear operators. We will show that we may interchange integration with the application
of bounded linear operators, which of course includes all elements of X∗. In the following
we will see that this is also possible for closed operators under certain conditions.

In the second half we will prove Bochner-versions of Fubini’s Theorem, Lebesgue’s
Dominated Convergence Theorem and the Fundamental Theorem of Calculus.

Proposition A.10. Let X, Y be two Banach spaces, T ∈ L(X,Y ) and let f : Ω →
X be Bochner integrable. Then T ◦ f : Ω → Y is also Bochner integrable, and
T
(∫

Ω f(ω) dµ(ω)
)

=
∫

Ω T (f(ω)) dµ(ω).

Proof. Let (gn)n be an approximating sequence of simple functions for f . Then T ◦ f is
Bochner measurable (cf. Remark A.2) and also Bochner integrable since we have∫

Ω
‖T (f(ω))− T (gn(ω))‖ dµ(ω) ≤ ‖T‖

∫
Ω
‖f(ω)− gn(ω)‖ dµ(ω) → 0
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and

T ◦ gn = T

(
Nn∑
in=1

xinχEin

)
=

Nn∑
in=1

T (xin)χEin .

Finally equality of the integrals follows from

T

(∫
Ω
f(ω) dµ(ω)

)
= T

(
lim
n→∞

∫
Ω
gn(ω) dµ(ω)

)
= lim

n→∞
T

(∫
Ω
gn(ω) dµ(ω)

)
= lim

n→∞
T

(
Nn∑
in=1

xinµ(Ein)

)
= lim

n→∞

Nn∑
in=1

T (xin)µ(Ein)

= lim
n→∞

∫
Ω
T (gn(ω)) dµ(ω) =

∫
Ω
T (f(ω)) dµ(ω).

Remark A.11. This will be of particular interest when it comes to interchange the
integral and the dual action on B or, in case B = H is a Hilbert space, the scalar
product on H.

Proposition A.12. Let A be a closed operator from some Banach space X into another
Banach space Y , and let f : Ω → X be Bochner integrable. Furthermore, suppose that
f(Ω) ⊆ D(A) and A◦f : Ω→ Y is also Bochner integrable. Then

∫
Ω f(ω) dµ(ω) ∈ D(A),

and

A

(∫
Ω
f(ω) dµ(ω)

)
=
∫

Ω
A(f(ω)) dµ(ω). (A.2)

Proof. Recall that the linear space X × Y equipped with the norm ‖(x, y)‖1 := ‖x‖X +
‖y‖Y is complete and its topology induced by ‖( . , . )‖1 is equivalent to the product
topology (cf. Werner [22], Theorem I. 3. 3). Furthermore, recall that the graph G(A)
of A is a closed subspace of X × Y (cf. Definition 1.11). The function g defined by
g : Ω→ G(A), g(ω) := (f(ω), Af(ω)) is obviously Bochner measurable and also Bochner
integrable by Theorem A.8 and the estimate∫

Ω
‖g(ω)‖1 dµ(ω) =

∫
Ω
‖f(ω)‖X dµ(ω) +

∫
Ω
‖Af(ω)‖Y dµ(ω) <∞.

Now, we apply Proposition A.10 to the two (continuous) projection maps of X×Y onto
X and Y , respectively, to obtain∫

Ω
g(ω) dµ(ω) =

(∫
Ω
f(ω) dµ(ω),

∫
Ω
Af(ω) dµ(ω)

)
.

The fact
∫

Ω g(ω) dµ(ω) ∈ lin{g(ω) | ω ∈ Ω} ⊆ G(A) then gives (A.2).
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Theorem A.13 (Fubini). Let (Ω1,A1, µ1) and (Ω2,A2, µ2) be measure spaces, and let
f : Ω1 × Ω2 → X be Bochner measurable with respect to the product measure µ1 ⊗ µ2.
Furthermore, suppose that∫

Ω1

∫
Ω2

‖f(ω1, ω2)‖ dµ1(ω2) dµ2(ω1) < ∞. (A.3)

Then f is Bochner integrable and we have∫
Ω1

∫
Ω2

f(ω1, ω2) dµ2(ω2) dµ1(ω1) =
∫

Ω2

∫
Ω1

f(ω1, ω2) dµ1(ω1) dµ2(ω2)

=
∫

Ω1×Ω2

f(ω1, ω2) d(µ1 ⊗ µ2)(ω1, ω2).

Proof. As in the proof of Theorem A.4, we will suppose w.o.l.g. that X is separable. By
the the scalar version of Fubini’s Theorem for σ-finite spaces (cf. Taylor [19], Theorem
6. 4), (A.3) implies that ‖f‖ is integrable on Ω1 × Ω2 and that

∫
Ω2
‖f(ω1, ω2)‖ dµ2(ω2)

exists for almost all ω1 ∈ Ω1, hence by Theorem A.8, f : Ω1 × Ω2 → X is Bochner
integrable and

∫
Ω2
f(ω1, ω2) dµ2(ω2) exists for almost all ω1 ∈ Ω1. Now, we observe that

for any x∗ ∈ X∗, x∗ ◦ f is µ-integrable on Ω1 × Ω2 since |x∗ ◦ f | ≤ ‖x∗‖ ‖f‖, and again
by the classical Fubini theorem we have∫

Ω1

∫
Ω2

x∗ ◦ f dµ2 dµ1 =
∫

Ω2

∫
Ω1

x∗ ◦ f dµ1 dµ2 =
∫

Ω1×Ω2

x∗ ◦ f d(µ1 ⊗ µ2), (A.4)

which by Proposition A.10 furthermore agree with the integral
∫

Ω1
x∗
(∫

Ω2
f dµ2

)
dµ1.

Hence, by Thm.A.4, ω1 7→
∫

Ω2
f(ω1ω2) dµ2(ω2) is Bochner measurable with respect to

µ1, and (A.1) yields∫
Ω1

∥∥∥∥∫
Ω2

f dµ2

∥∥∥∥ dµ1 ≤
∫

Ω1

∫
Ω2

‖f‖ dµ2 dµ1 <∞,

thus the existence of
∫

Ω1

(∫
Ω2
f dµ2

)
dµ1 by Theorem A.8. The same argument holds

for
∫

Ω2

(∫
Ω1
f dµ1

)
dµ2 for we know that∫

Ω1

∫
Ω2

‖f‖ dµ2 dµ1 =
∫

Ω2

∫
Ω1

‖f‖ dµ1 dµ2.
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An application of the Hahn-Banach theorem completes the proof since by (A.4) we have

x∗
(∫

Ω1

∫
Ω2

f dµ2 dµ1

)
=
∫

Ω1

∫
Ω2

x∗ ◦ f dµ2 dµ1 =
∫

Ω2

∫
Ω1

x∗ ◦ f dµ1 dµ2

= x∗
(∫

Ω2

∫
Ω1

f dµ1 dµ2

)
=
∫

Ω1×Ω2

x∗ ◦ f d(µ1 ⊗ µ2)

= x∗
(∫

Ω1×Ω2

f d(µ1 ⊗ µ2)
)

for all x∗ ∈ X∗.

Theorem A.14 (Dominated Convergence). Let fn : Ω → X, n ∈ N, be Bochner inte-
grable functions such that f(ω) := limn→∞ fn(ω) exists for almost all ω ∈ Ω. If there
exists a µ-integrable function g : Ω → R such that ‖fn(ω)‖ ≤ g(ω) a.e. for all n ∈ N,
then f is Bochner integrable, and limn→∞

∫
Ω fn(ω) dµ(ω) =

∫
Ω f(ω) dµ(ω). Moreover,

we have limn→∞
∫

Ω ‖f(ω)− fn(ω)‖ dµ(ω) = 0.

Proof. Being the pointwise limit of measurable functions a.e., by Corollary A.5 f is
Bochner measurable, and therefore f − fn, too. We observe that both ‖f‖ and hn :=
‖f − fn‖ are dominated by 2g a.e., hence they are Bochner integrable by Theorem A.8.
Since hn vanishes, as n → ∞, the scalar version Lebesgue’s Dominated Convergence
Theorem implies that

∫
Ω ‖f(ω)− fn(ω)‖ dµ(ω)→ 0. Equation (A.1) finally yields∥∥∥∥∫

Ω
f(ω) dµ(ω)−

∫
Ω
fn(ω) dµ(ω)

∥∥∥∥ → 0.

Theorem A.15 (Fundamental Theorem of Calculus). Let f : R ⊇ [a, b] → X be con-
tinuous and let ϕ(x) :=

∫ x
a f(t) dt, x ∈ [a, b]. Then ϕ is continuously differentiable on

[a, b] with ϕ′ = f .
Conversely, for continuously differentiable f : R ⊇ [a, b]→ X, we have∫ b

a
f ′(t) dt = f(b)− f(a).

Proof. In order to show differentiability of ϕ at x ∈ [a, b] we must prove the exis-
tence of some ϕ′(x) ∈ L(R, X) such that ‖ϕ(x+ h)− ϕ(x)− ϕ′(x)h‖ → 0, as h → 0
(cf. Werner [22], Definition III. 5. 1 and Lemma III. 5. 2). Of course, we choose ϕ′ = f
to prove this condition: Let h > 0 be sufficiently small so that ‖f(x)− f(t)‖ < 1 for all
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t ∈ B(x, h). Then by (A.1) we have

‖ϕ(x+ h)− ϕ(x)− f(x)h‖ =
∥∥∥∥∫ x+h

x
(f(t)− f(x)) dt

∥∥∥∥
≤
∫ x+h

x
‖(f(t)− f(x))‖ dt < h→ 0.

The proof of the second statement involves the fundamental theorem of calculus for
real-valued C1-functions. To this end, let x∗ ∈ X∗. We may assume that x∗(X) ⊆ R
since otherwise we can treat real and imaginary parts separately. Applying the funda-
mental theorem of calculus to x∗ ◦ f and Proposition A.10 to the integral, we obtain

x∗ (f(b)− f(a)) = x∗(f(b))− x∗(f(a)) =
∫ b

a
(x∗ ◦ f)′(t) =

∫ b

a
x∗ ◦ f ′(t) dt =

= x∗
(∫ b

a
f(t) dt

)
.

Since x∗ was arbitrary, the Hahn-Banach theorem gives the desired result.

A.6. Lp(Ω, X;µ)-spaces

Definition A.16. For 1 ≤ p ≤ ∞, we denote by Lp(Ω, X;µ) the space of all (equivalence
classes of) Bochner measurable functions f : Ω→ X such that

‖f‖Lp(Ω,X;µ) :=


(∫

Ω
‖f(ω)‖pX dµ(ω)

)1/p

< ∞ if 1 ≤ p <∞,

inf{c ∈ R | µ({‖f‖X > c}) = 0} <∞ if p =∞.

The spaces Lp(Ω, X;µ) are usually called Bochner-Lebesgue or Lebesgue-Bochner
spaces.

Proposition A.17. The spaces Lp(Ω, X;µ), 1 ≤ p ≤ ∞, are normed vector spaces.

The proof is omitted due to similarity to the scalar-valued version.
As a matter of fact, these spaces are even Banach spaces as shown in the following.

Theorem A.18. The normed vector space Lp(Ω, X;µ), 1 ≤ p ≤ ∞, is complete.

Proof. 1 ≤ p <∞ :
Let (fn)n be a Cauchy sequence in Lp(Ω, X;µ). Then choose indices n1 < n2 < . . .

so that ‖fn − fm‖Lp(Ω,X;µ) <
1
2k

for all n,m ≥ nk, k = 1, 2, . . ., and define the Bochner
measurable functions gi := fni+1 − fni . We observe that∥∥∥∥∥

N∑
i=1

‖gi‖X

∥∥∥∥∥
Lp(Ω,C)

≤
N∑
i=1

‖‖gi‖X‖Lp(Ω,C) =
N∑
i=1

‖gi‖Lp(Ω,X;µ) < 1 (A.5)
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for all N ∈ N. The scalar-valued lemma of Fatou together with (A.5) gives∫
Ω

( ∞∑
i=1

‖gi‖X

)p
dµ ≤ lim

N→∞

∫
Ω

(
N∑
i=1

‖gi‖X

)p
dµ ≤ 1.

Thus,
∑∞

i=1 ‖gi‖X ∈ Lp(Ω,C), which implies that
∑∞

i=1 ‖gi(ω)‖X < ∞ for almost all
ω ∈ Ω. Hence,

∑∞
i=1 gi(ω) converges a.e. in X, and

∑∞
i=1 gi is Bochner measurable by

Corollary A.5 (iii). Next, we define fnk := fn1 +
∑k

i=1 gi = fn1 +
∑k

i=1 fni+1 − fni , and

f(ω) :=

{
lim
k→∞

fnk(ω) if it exists,

0 otherwise.

Obviously, f is Bochner measurable, and we will show that it is also the limit of (fn)n.
To this end let ε > 0. Then there exists N ∈ N such that ‖fnk − fm‖Lp(Ω,X;µ) < ε for
all nk,m ≥ N . Another application of the scalar-valued lemma of Fatou gives∫

Ω
‖f − fm‖pX dµ ≤ lim inf

k→∞

∫
Ω
‖fnk − fm‖

p
X dµ < ε.

That is, f − fm ∈ Lp(Ω, X;µ). Hence fn → f ∈ Lp(Ω, X;µ), as n→∞.
p =∞ :
Let (fn)n be a Cauchy sequence in L∞(Ω, X), hence there exists M ∈ R+ such

that ‖fn‖L∞(Ω,X) ≤ M for all n ∈ N. Moreover, we know that ‖fm − fn‖L∞(Ω,X) =
ess sup ‖fm(ω)− fn(ω)‖X → 0, as m,n → ∞. Thus, there exists a null set E ∈ A such
that (fn(ω))n is a Cauchy sequence for all ω ∈ Ec, and we may define

f(ω) :=

{
lim
n→∞

fn(ω) if ω ∈ Ec,
0 otherwise.

So, f is Bochner measurable by Corollary A.5 (iii). Since it is bounded by M almost
everywhere it is an element of L∞(Ω, X), and obviously fn → f ∈ L∞(Ω, X).

Remark A.19. Let X = H be a Hilbert space with scalar product 〈 . , . 〉H . Then
L2(Ω, H;µ) is also a Hilbert space with scalar product

〈f, g〉L2(Ω,H;µ) :=
∫

Ω
〈f(ω), g(ω)〉H dµ(ω)

for f, g ∈ L2(Ω, H;µ).

Remark A.20. Furthermore, it is clear that Lp(Ω, X;µ), 1 ≤ p ≤ ∞, agrees with the
usual Lebesgue space Lp(Ω, µ) in case X = C.

We close this chapter with a proposition on square-integrable Hilbert space-valued
functions.
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Proposition A.21. Let H be a separable Hilbert space and let f : Ω → H. If ‖f‖H is
µ-measurable with

∫
Ω ‖f(ω)‖2H dµ(ω) <∞, then f is Bochner-measurable, and we have

f ∈ L2(Ω, H;µ).

Proof. Using the polarization identity for 〈 . , . 〉L2(Ω,H;µ), we obtain |〈f, g〉L2(Ω,X;µ)| <
∞ for all g ∈ L2(Ω, X;µ). Hence, ω 7→ 〈f(ω), g(ω)〉H is µ-integrable, thus is particular
µ-measurable, for all g ∈ L2(Ω, X;µ). Now, if (Kj)j is a fundamental sequence of
compact subsets of Ω, it follows that ω 7→

〈
f(ω), x · χKj (ω)

〉
H

=
〈
(f · χKj )(ω), x

〉
H

is
µ-measurable for all x ∈ H ∼= H ′ and all j ∈ N. Hence, all fj := f · χKj are weakly
measurable, and since H is separable, they are also Bochner-measurable by Corollary
A.5 (i). Corollary A.5 (iii) finally yields Bochner measurability of f , being the pointwise
limit a.e. of the measurable functions (fj)j .

For more details on Bochner integration in case Ω is a generic interval I ⊆ R we refer
to Arendt et al. [2], § 1.
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The main object of this appendix is a brief discussion of different types of Banach algebras
and their representations with the aim of comparing them with Lie group representations.
The author’s motivation for this illustration is given by the correspondence between
unitary Lie group representations π : G→ H and induced algebra representations of the
convolution algebra L1(G) on H.

B.1. Banach Algebras

Recall that an algebra (A,+, · ) is defined to be vector space A over some field F with a
bilinear multiplicative operation A×A→ A : (x, y) 7→ xy which satisfies

(xy)z = x(yz) (associativity),
x(y + z) = xy + xz (distributivity),
λµ(xy) = (λx)(µy)

for all x, y ∈ A and all λ, µ ∈ F. From its definition, it is clear that (A, · ) only forms a
semi-group. If there exists a unit element e ∈ A such that ex = xe = x for all x ∈ A,
then A is called algebra with unit or unital algebra. For applications it is often very
important that an algebra carries a norm. On the other hand, some normed spaces turn
out to provide a multiplicative operation, which in case of function spaces is often given
by pointwise multiplication. Since continuity of vector addition and scalar multiplication
is an essential feature of normed spaces (which is satisfied by definition), it is sensible to
postulate continuity for multiplication. This can be provided, e.g., by imposing a bound
on the product.

Definition B.1. A normed algebra (Banach algebra) A is a normed vector space (Ba-
nach space) over K, which is also an algebra satisfying

‖xy‖ ≤ ‖x‖ · ‖y‖ (B.1)

for all x, y ∈ A.

In fact, condition (B.1) implies (joint) continuity of multiplication since for xn → x
and yn → y we have

‖xnyn − xy‖ = ‖xnyn − xyn + xyn − xy‖ ≤ ‖x− xn‖ ‖yn‖ + ‖x‖ ‖yn − y‖ → 0.
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If A has a multiplicative unit e, applications often require ‖e‖ = 1.

Definition B.2. A commutative unital Banach algebra A with ‖e‖ = 1 is called a
normed ring.

For more information on normed rings see Yosida [23], Chapter XI.
As a matter of fact, some very well-known Banach spaces are even Banach algebras.

A few of them and other prominent examples shall be illustrated next.

Examples B.3. (i) The archetype of Banach algebra is L(B), the set of bounded oper-
ators, on a (real or complex) Banach space B, equipped with the operator norm. Scalar
multiplication and addition of its elements are defined pointwise, whereas multiplication
is given by composition of the operators. It clearly satisfies condition (B.1). Note that
L(B) is non-commutative for dim(B) > 1. Moreover, it possesses a multiplicative unit
element, namely the identity map. Furthermore, note that the special case L(H), where
H is a complex Hilbert space, in fact inspired various important notions in the context
of Banach algebras (cf. Definition B.4 and Definition B.5).

(ii) The space K(B) of compact linear operators on B is a closed two-sided ideal in
L(B). Hence, it is a closed Banach sub-algebra of L(B) and, in particular, a Banach
algebra itself, which is of course non-commutative for dim(B) > 1. Nevertheless, it does
not share the multiplicative unit with L(B) if dim(B) = ∞. (Otherwise, the closed
unit sphere SB would be mapped compactly onto itself, which contradicts the Lemma
of Riesz and its consequences, cf. Werner [22], Lemma I. 2. 6 and Theorem I. 2. 7.)

(iii) Let X be a compact Hausdorff space. Then (C(X,C), ‖ . ‖∞) together with
pointwise addition, multiplication and scalar multiplication defines a normed ring with
unit X → C : x 7→ 1.

(iv) For locally compact X we define C0(X) := {f ∈ C(X) | ∀ε ∃K ⊂⊂
X s.t.

∥∥f |X\K∥∥∞ < ε}. Carrying the sup-norm it is a commutative Banach algebra
without unit.

(v) Let D denote the open unit disc in C and let A(D) be the space of holomorphic
functions on D (which are continuous on D). If we define multiplication again pointwise,
then (A(D), ‖ . ‖∞) is a normed ring. (Completeness of A(D) is due to the fact that
A(D) ⊆ C(D) is closed in the sup-norm.)

(vi) Let (Ω,A, µ) be a measure space. Then L∞(Ω, µ) is also a normed ring with unit
1 with multiplication defined pointwise almost everywhere.

(vii) Consider the Banach space `1(Z) of bilateral absolutely convergent complex se-
ries. Then convolution

x ∗ y(n) :=
∑
k+l=n

x(k)y(l), n ∈ Z,

defines a continuous commutative algebra multiplication on `1(Z) (for continuity see
(viii)) and the Banach algebra (`1(Z),+, ∗, ‖ . ‖`1) possesses a unit element given by
(. . . , 0, 1, 0, . . .), where 1 is the 0-th digit.
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B. On the representations of Banach algebras

(viii) Now, we extend Example (vii) to arbitrary Lie groups G. To begin with, we
define convolution for f1, f2 ∈ L1(G) (cf. (1.19)) by

f1 ∗ f2(g) :=
∫
G
f1(h)f2(h−1g) dh.

We observe that convolution satisfies (B.1) since we may apply Tonelli’s theorem for
σ-finite spaces (cf. § refMeasSp and Taylor [19], Theorem 6. 3) to obtain

‖f1 ∗ f2‖L1 =
∫
G

∣∣∣∣∫
G
f1(h)f2(h−1g) dh

∣∣∣∣ dg ≤ ∫
G

∫
G

∣∣f1(g)f2(h−1g)
∣∣ dh dg

=
∫
G
|f1(h)|

∫
G

∣∣f2(h−1g)
∣∣ dg dh = ‖f1‖L1 ‖f2‖L1

Hence, (L1(G),+, ∗, ‖ · ‖L1) forms a Banach algebra which is commutative if G is com-
mutative. The existence of a multiplicative unit is not given in general, not even in case
G = (R,+).

In analogy to the map L(H) → L(H) : T 7→ T ∗, we define another operation on real
and complex algebras.

Definition B.4. Let A be an algebra over K = R or C. A map A → A : x 7→ x∗ with
the properties

(i) (x+ y)∗ = x∗ + y∗,

(ii) (λx)∗ = λx∗,

(iii) (xy)∗ = y∗x∗,

(iv) (x∗)∗ = x,

for all x, y ∈ A and all λ ∈ K (where complex conjugation is to be understood as the
identity on R in the real case) is called an involution (on A). A is then called involutive
algebra or ∗-algebra with involution x 7→ x∗.

If A is also a normed algebra (Banach algebra) with

(v) ‖x∗‖ = ‖x‖ for all x ∈ A,

then A is called a normed ∗-algebra (Banach ∗-algebra).

Trivially, every real (normed) algebra A is a (normed) ∗-algebra with involution id :
A→ A.

Definition B.5. Let A be a Banach ∗-algebra. Then A is said to be a C∗-algebra if it
also satisfies

(vi) ‖x∗x‖ = ‖x‖2 for all x ∈ A.
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Remark B.6. Note that every C∗-algebra is a Banach ∗-algebra: ‖x‖2 = ‖x∗x‖ ≤
‖x∗‖ ‖x‖ implies ‖x‖ ≤ ‖x∗‖, and by the above have ‖x∗‖ ≤ ‖x∗∗‖ = ‖x‖.

Conditions (v) and (vi) are also inspired by the key-example L(H). In fact, L(H) is a
non-commutative unital C∗-algebra. Note that the algebras from Example B.3 (iii), (iv)
and (vi) are commutative C∗-algebras with involution f 7→ f , and L1(G) from Example
B.3 (viii) is a Banach ∗-algebra as we will see in the proof of Proposition B.12.

B.2. Algebra Representations

In the following we introduce the notion of algebra representations and compare them
with Lie group representations. Moreover, we give a concrete example of a representation
of the Banach ∗-algebra L1(G).

Definition B.7. Let A and B be algebras over F. A map π : A→ B is called an algebra
homomorphism if it satisfies the conditions π(x+ y) = π(x) + π(y), π(xy) = π(x)π(y),
and π(λx) = λπ(x) for all x, y ∈ A and all λ ∈ F. A bijective algebra homomorphism is
called algebra isomorphism.

Definition B.8. Let A be an algebra over F and E be an F-vector space. A representa-
tion is an algebra homomorphism π from A to the algebra Lin(E).

We say π is

(i) non-degenerate if for every u ∈ E, π(x)u = 0 for all x ∈ A implies u = 0.

(ii) invariant on a subspace E1 ⊆ E if π(A)(E1) ⊆ E1

(iii) faithful if it is injective on A,

(iv) trivial if π(x) = 0 ∈ L(E) for all x ∈ A,

(v) irreducible if is non-trivial and the only invariant subspaces are E and {0},

(vi) equivalent to a representation ρ of A on a vector space F if there exists a vector-
space isomorphism V : E → F (called equivalence) such that π(x) = V ρ(x)V −1

for all x ∈ A.

In case that A is also involutive, we must evidently adapt the definition. Since the
adjoint of an operator T ∈ Lin(E) is a linear map on the algebraic dual of E, we choose
E to be a Hilbert space. If we furthermore wish to have some notion of continuity for
our representations, it is sensible to stick to Banach ∗-algebras.

Definition B.9. Let A and B be involutive algebras. A ∗-homomorphism (isomorphism)
from A to B is an algebra homomorphism (isomorphism) π : A → L(H) that satisfies
π(x∗) = π(x)∗ for all x ∈ A.

Definition B.10. A ∗-representation of a Banach ∗-algebra A on a Hilbert space H is
a ∗-homomorphism from A into the Banach ∗-algebra L(H).
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Remark B.11. A comparison of Definition 1.42 and Definition B.10 shows that an al-
gebra representation formally satisfies (i) and (ii) of Definition 1.42 for the commutative
group (A,+), and (i) for (A, · ). If A is unital and π is non-degenerate, then π(e) = I
(cf. Arveson [3], §. 2. 5, Example 2), hence (ii) also holds for (A, · ). For sure, the most
peculiar difference between Definition 1.42 and Definition B.10 is that we do not pos-
tulate any form of continuity of π as a map from the Banach space A into L(H). This
is due to the remarkable fact that every ∗-representation π : A → L(H) automatically
satisfies ‖π‖ ≤ 1 (cf. Arveson [3], Theorem 2. 5. 5). From this it is clear that every
∗-representation is even norm continuous.

In what follows we will show that L1(G) is a Banach ∗-algebra and that each unitary
Lie group representation π of G on H induces a non-degenerate ∗-representation of L1(G)
on H, which is called the integrated representation of π (cf. (1.18)). In particular, this
holds for the Schrödinger representation of the Heisenberg group Hn on L2(R2n) (cf.
(2.31)).

To begin with, we will show that L1(G) is a Banach algebra by proving condition (B.1)
from Definition B.1. To this end, let f1, f2 ∈ L1(G). An application of the Fubini-Tonelli
theorem and left-invariance of the Haar measure dg then yield the required inequality

‖f1 ∗ f2‖L1(G) =
∫
G

∣∣∣∣∫
G
f1(h)f2(h−1g) dh

∣∣∣∣ dg ≤ ∫
G

∫
G

∣∣f1(h)f2(h−1g)
∣∣ dh dg

=
∫
G

∫
G

∣∣f2(h−1g)
∣∣ dg |f1(h)| dh = ‖f1‖L1(G) ‖f2‖L1(G) . (B.2)

Next we prove the existence of an involution on L1(G). Recalling from Remark 1.50
that the modular function ∆G : G→ (R∗, · ) is a continuous group homomorphism with∫
G f(g) dg =

∫
G f(g−1)∆(g−1) dg, we state the map

∗ : L1(G)→ L1(G),

f 7→ (g 7→ f∗(g) : = f(g−1)∆(g−1))

satisfies the conditions (i) - (v) from Definition B.4.
(i) and (ii) are easily seen.
(iii) Note that a change of variables and left-invariance of the Haar integral gives the

following identity for the convolution:

f1 ∗ f2(g) =
∫
G
f1(h)f2(h−1g) dh =

∫
G
f1(gh)f2(h−1) dh.

Hence, we have

(f∗2 ∗ f∗1 )(g) =
∫
G
f∗2 (gh)f∗1 (h−1) dh =

∫
G
f2(h−1g−1)f1(h) ∆(h−1g−1)∆(h) dh

=
∫
G
f1(h)f2(h−1g−1) dh∆(g−1) = f1 ∗ f2(g−1) ∆(g−1) = (f1 ∗ f2)∗(g).
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for all g ∈ G.
(iv) (f∗)∗(g) = f∗(g−1) ∆(g−1) = f(g) ∆(g)∆(g−1) = f(g) for all g ∈ G.
(v) ‖f∗‖L1 =

∫
G |f

∗(g)| dg =
∫
G

∣∣f(g−1)
∣∣ ∆(g−1) dg =

∫
G |f(g)| dg = ‖f‖L1 .

Now, for f ∈ L1(G) and v ∈ H, we define the induced representation by

π :L1(G)→ L(H),

f 7→ (v 7→
∫
G
f(g)π(g)v dg).

The map π is linear and bounded, with ‖π(f)‖ ≤ ‖f‖L1 . Moreover π defines an
algebra representation since it respects convolution: Let f1, f2 ∈ L1(G) and v ∈ H. By
the L1(G)-estimate on f(g, h) := f1(h)f2(h−1g) from Example B.3 (viii) and the fact
that ‖π(g)‖ ≤ 1 for all g ∈ G we may apply Theorem A.13 to change the order of
integration in

π(f1 ∗ f2)v =
∫
G

∫
G
f1(h)f2(h−1g) dhπ(g)v dg

=
∫
G
f1(h)π(h)

∫
G
f2(h−1g)π(h−1g)v dg dh = π(f1)π(f2)v (B.3)

We conclude π(f1 ∗ f2) = π(f1) ◦ π(f2).
Non-degeneracy is due to the following observation: Let fj ∈ C∞c (G), j ∈ N, be an

approximating identity as in the proof of Theorem 1.56. Supposing π(f)u = 0 for all
f ∈ L1(G), we obtain

0 = lim
j→∞

π(fj)u = lim
j→∞

∫
G
fj(g)π(g)u dg = π(e)u = u,

which is precisely the condition we had to prove.
A final calculation shows that π also commutes with involution. To this end, let u

and v be arbitrary vectors in H and f ∈ L1(G). Repeated applications of Proposition
A.10 give

〈u, π(f)∗v〉 =
〈∫

G
f(g)π(g)u dg, v

〉
=
∫
G
〈π(g)u, v〉 f(g) dg

=
∫
G

〈
π(g−1)u, v

〉
f(g−1) ∆(g−1) dg =

∫
G

〈
π(g)∗u, f(g−1) ∆(g−1)v

〉
dg

=
〈
u,

∫
G
f∗(g)π(g)v dg

〉
= 〈u, π(f∗)v〉 .

Hence, we have proved the following proposition.

Proposition B.12. Each unitary Lie group representation π : G → H induces a non-
degenerate ∗-representation of the Banach ∗-algebra L1(G) on H.
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This appendix is thought to give a brief overview of the main results of spectral theory
of self-adjoint operators (cf. Definition 1.22), which we eventually use to prove Stone’s
Theorem and Schur’s Lemma. Note that throughout this chapter, H denotes a complex
Hilbert space.

C.1. Spectral Theorem

Since a complete discussion of spectral theory clearly is out of reach in this work, we will
not prove any result of what is to be presented in this section but give exact references to
our main source Weidmann [21]. For the sake of brevity we will presume some familiarity
with spectral theory of compact operators.

Recall that the spectral theorem for compact self-adjoint operators (cf. Weidmann [21]
Theorem 7. 1) states that for a compact self-adjoint operator A on H there exist non-zero
eigenvalues |λ0| ≥ |λ1| ≥ . . . such that

Ax =
ν(A)∑
k=0

λk 〈x, ek〉 ek ∀x ∈ H, (C.1)

where the ek are the corresponding eigenvectors and ν(A) is the number of non-zero
eigenvalues of A counted with their multiplicities. Equivalently, if we count every eigen-
value λk only once and define Pk : H → H to be the orthogonal projection onto the
eigenspace of λk, we can rewrite (C.1) as

A =
ν(A)∑
k=0

λkPk. (C.2)

Now the question is what happens in the more general case of bounded or unbounded self-
adjoint operators. As so often in mathematics, the discrete sum has to be replaced by an
integral, to be precise a projection-valued integral, since the spectrum of A (cf. Definition
1.12) is that simple any longer. To this purpose, we introduce a family of projections
that will eventually induce our spectral measure.

Definition C.1. A spectral family on H is a mapping E : R→ L(H) with the following
properties:

(a) E(t) is an orthogonal projection for every t ∈ R,

(b) E(s) ≤ E(t) for s ≤ t,
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(c) limε→0+ E(t + ε)x = E(t)x ∀x ∈ H, i.e., E is continuous from the right in the
strong operator topology (we will write s-lim),

(d) s− limt→−∞E(t) = 0, s− limt→+∞E(t) = I.

Example C.2. Since Definition C.1 was motivated by generalizing (C.2), it is not sur-
prising that we find a spectral family for a given compact self-adjoint operator A, namely

E(t) :=
∑

{k|λk≤t}

Pk, t ∈ R.

The proof of properties (a), (b), and (d) is immediate. Thus, it remains to prove (c).
For x ∈ H, t ∈ R and ε > 0 we compute

‖E(t+ ε)x− E(t)x‖2 =
∑

{k|t<λk≤t+ε}

‖Pkx‖2 . (C.3)

Since
∑

k ‖Pkx‖
2 is convergent and since for every N ∈ N there exists some ε > 0 such

that λk /∈ (t, t+ ε] for all k ≤ N , the sum in (C.3) converges to zero as ε→ 0.

Setting ρx(t) := 〈E(t)x, x〉 = ‖E(t)x‖2, we obtain a non-negative, bounded, non-
decreasing, right-continuous function on R with limt→−∞ ρx(t) = 0 and limt→+∞ ρx(t) =
‖x‖2. Hence, µ∗x((a, b]) := ρx(b) − ρx(a) defines a pre-measure on the algebra of subin-
tervals of R which extends to a Lebesgue-Stieltjes measure µx on BR, the Borel sigma
algebra of R (cf. Taylor [19], Theorem 5. 4 and Exercise 1, Chapter 5).

We say u : R→ C is E-measurable if and only if it is µx-measurable for all x ∈ H. In
particular, all continuous functions, all simple functions and their pointwise limits are
E-measurable for every spectral family E. For a step function u =

∑n
j=1 cjχIj , with

intervals Ij and cj ∈ C, we define its integral by∫
u(t) dE(t) :=

∫
R
u(t) dE(t) :=

n∑
j=1

cjE(Ij),

where we set

E((a, b]) := E(b)− E(a), E((a, b)) := E(b−)− E(a)
E([a, b]) := E(b)− E(a−), E([a, b)) := E(b−)− E(a−),

and E(t−) := s− limε→0+ E(t− ε).
This integral is obviously a bounded operator on H and satisfies∥∥∥∥∫ u(t) dE(t)x

∥∥∥∥2

=
∫
|u(t)|2 dρx(t) (C.4)

for all step functions u and all x ∈ H. If u ∈ L2(R, ρx) for some x ∈ H, then there exists
a sequence (un)n of step functions for which un → u in L2(R, ρx). Moreover, for this
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sequence we have∥∥∥∥∫ un(t) dE(t)x−
∫
um(t) dE(t)x

∥∥∥∥2

=
∥∥∥∥∫ (un(t)− um(t)) dE(t)x

∥∥∥∥2

=
∫
|un(t)− um(t)|2 dρx(t) → 0 (n,m→∞),

whence we conclude that
(∫
un(t) dE(t)x

)
n

is a Cauchy sequence in H. This allows us
to define ∫

u(t) dE(t)x := lim
n→∞

∫
un(t) dE(t)x, (C.5)

which is easily seen to be independent of the choice of (un)n. By continuity of the norms,
(C.4) results in ∥∥∥∥∫ u(t) dE(t)x

∥∥∥∥2

=
∫
|u(t)|2 dρx = ‖u‖2L2(R,dρx) . (C.6)

So, the integral defined by (C.5) is a linear isometry from L2(R, ρx) into H. On the
other hand, if we concentrate on the action of x and fix u, equation (C.5) gives rise to
the operator

Ê(u) : H ⊇ D(Ê(u))→ H,

x 7→
∫
u(t) dE(t)x, (C.7)

where its domain is specified by

D(Ê(u)) := {x ∈ H | u ∈ L2(R, ρx)}.

The operator Ê(u) is an essential tool in spectral theory and its applications. In what
follows we give a list of its properties, some of which will be needed for the proof of
Stone’s Theorem.

Theorem C.3. Let E be spectral family on H and let u : R → C be an E-measurable
function. Then (C.7) defines a normal operator on D(Ê(u)). If v : R → C is another
E-measurable function, a, b ∈ C, and ϕn : C→ C,

ϕn(z) =
{
z if |z| ≤ n,
0 otherwise,

Then then following hold true:
(a) For all x ∈ D(Ê(u)) and y ∈ D(Ê(v)) we have〈

Ê(v)y, Ê(u)x
〉

= lim
n→∞

∫
ϕn(v(t))ϕn(u(t)) d 〈y,E(t)x〉 .
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We will write
∫
v(t)u(t) d 〈y,E(t)x〉 whenever the limit exists.

(b) For all x ∈ D(Ê(u)) we have∥∥∥Ê(u)x
∥∥∥2

=
∫
|u(t)|2 dρx(t) = ‖u‖2L2(R,dρx) .

(c) If u is bounded, then Ê(u) ∈ L(H) and
∥∥∥Ê(u)

∥∥∥ ≤ sup{|u(t)| | t ∈ R}.

(d) If u = 1, then Ê(u) = I.
(e) For all x ∈ D(Ê(u)) and all y ∈ H we have〈

Ê(u)x, y
〉

=
∫
u(t) d 〈E(t)x, y〉 .

(f) If u ≥ C, then
〈
x, Ê(u)x

〉
≥ C‖x‖2 for all x ∈ D(Ê(u)).

(g) Ê(au+ bv) ⊇ aÊ(u) + bÊ(v) and D(Ê(u) + Ê(v)) = D(Ê(|u|+ |v|).
(h) Ê(uv) ⊇ Ê(u)Ê(v) and D(Ê(u)Ê(v)) = D(Ê(v)) ∩ D(Ê(uv)).
(i) D(Ê(u)) is dense in H. Moreover, D(Ê(u)) = D(Ê(u)) and Ê(u) = Ê(u)

∗
.

(j) If χS is the characteristic function for some set S ⊆ R such that χS is E-
measurable, then Ê(χS) =: E(S) is an orthogonal projection and the map

E : P(R)→ L(H),

S 7→ Ê(χS)

defines a projection-valued measure on R.

The proof of (a) - (i) can be found in Weidmann [21], Chapter 7, and (j) follows from
(c), (h) and (i).

Theorem C.4 (Spectral Theorem, J. von Neumann). For every self-adjoint operator A
on a Hilbert space H there exists exactly one spectral family E such that

T = Ê(id) =
∫
t dE(t).

Moreover, the spectral family is explicitly given by Stone’s formula

〈y, (E(b)− E(a))x〉 = lim
δ→0

lim
ε→0

1
2πi

∫ b+δ

a+δ
〈y, (RT (t− iε)−RT (t+ iε))x〉 dt

for all x, y ∈ H and −∞ < a ≤ b < +∞.

We provide a second version of the spectral theorem, which is more descriptive at first
sight since it states that every self-adjoint operator has a representation as an operator
of multiplication on some L2(R, dσ) or the direct sum of such spaces.
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Theorem C.5 (Spectral representation theorem). Let T be a self-adjoint operator on
a Hilbert space H. Then there exists a family {ρα | α ∈ A} of right-continuous non-
decreasing functions and a unitary operator U : H → ⊕α∈AL2(R, ρα) such that

T = U−1MidU,

where Mid, defined by

Mg((fα)α) := (gfα)α

for all measurable functions g : R → C, is the maximal operator of multiplication on
⊕α∈AL2(R, ρα).

The spectral family E of T is given by

E(t) = U−1Mχ(−∞,t]U.

If H is separable, then ⊕α∈AL2(R, ρα) is unitarily isomorphic to some L2(M,dσ), and
there exist a σ-measurable function a : R→ C and a unitary operator V : H → L2(R, dσ)
such that

T = V −1MaV,

where Ma is the standard operator of multiplication by a.

Theorem C.6. Let T be a self-adjoint operator on H and let u(t) :=
∑N

j=0 cjt
j for

some cj ∈ C. Then we have Ê(u) =
∑N

j=0 cjT
j, where T 0 := I.

Theorem C.7. Let T be a self-adjoint operator on H. Then T is bounded if and only
if there exist γ1, γ2 ∈ R such that

E(t) :=
{

0 if t ≤ γ1

I if t ≥ γ2

In that case we can set

γ1 := m := inf{〈x, Tx〉 | x ∈ D(T ), ‖x‖ = 1},
γ2 := M := sup{〈x, Tx〉 | x ∈ D(T ), ‖x‖ = 1}.

Moreover, we have E(t) 6= 0 and E(t) 6= I if m < t < M .

For the proofs see Weidmann[21], Theorem 7. 17 - 7. 19 and 7. 21, whereas last state-
ment of Theorem C.5 is proved in Haslinger [9], Satz 12. 9.

C.2. Stone’s Theorem

This section is devoted to Stone’s theorem, which characterizes the relation between
self-adjoint operators and strongly continuous unitary one-parameter groups. Based on
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the facts illustrated above, we will give a complete proof of Stone’s theorem. As in §C.1,
H denotes a complex Hilbert space.

Theorem C.8. Let A be a self-adjoint operator on H with spectral family E and let

U(t) = eitA =
∫
eits dE(s)

for all t ∈ R. Then t 7→ U(t) is a strongly continuous unitary one-parameter group with
infinitesimal generator iA.

Proof. First note by Proposition C.3 (c) that U(t) ∈ L(H) for all t ∈ R, hence
D(Ê(eit.)) = H. By property (h) of the same theorem, we have I = Ê(eit. e−it.) ⊇
Ê(eit.)Ê(e−it.) and D(Ê(eit.)Ê(e−it.)) = D(Ê(e−it.)) ∩ D(Ê(eit. e−it.)) = H. It follows
that U(t)U(−t) = I, thus U(−t) = U(t)−1. The same argument holds for the product
of the operators U(t) and U(s), i.e., U(t)U(s) = U(t + s) for all s, t ∈ R. Moreover,
we observe that U(−t) = Ê(eit.) = Ê(eit.)∗ = U(t)∗ due to (i), hence U is a unitary
one-parameter group.

In the next step we prove strong continuity. For this purpose note that

∣∣eix − eiy∣∣ =
∣∣∣e−i(x+y)/2

∣∣∣ ∣∣eix − eiy∣∣ =
∣∣∣ei(x−y)/2 − e−i(x−y)/2

∣∣∣ = 2
∣∣∣∣sin(x− y2

)∣∣∣∣
for all x, y ∈ R and recall that∣∣∣∣sin(x− y2

)∣∣∣∣ ≤ 1 and sin
(
x− y

2

)
→ 0 (x→ y).

Putting these facts together, we obtain using (C.6)

∥∥(U(t)− U(t′))x
∥∥2 =

∥∥∥∥∫ (eits − eit′s) dE(s)x
∥∥∥∥2

=
∫ ∣∣∣eits − eit′s∣∣∣2 dρx(s)

= 2
∫ ∣∣∣∣sin((t− t′)s

2

)∣∣∣∣2 dρx(s),

which yields strong continuity using dominated convergence.
Finally, we will identify the infinitesimal generator of U (as iA). To this end, we

observe that

1
t
(U(t)x− Ix) =

1
t

∫ (
eits − 1

)
dE(s)x (C.8)

holds for all t > 0 and all x ∈ H. Keeping in mind that

∣∣eits − 1
∣∣ ≤ |ts| ⇔ ∣∣∣∣1t (eits − 1

)∣∣∣∣ ≤ |s| ∀s, t ∈ R, t 6= 0

and that t−1(eits−1)→ is for all s ∈ R, as t→ 0, we again apply dominated convergence
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and (C.6) to obtain

lim
t→0

∥∥∥∥1
t
(U(t)x− Ix)− iAx

∥∥∥∥2

= lim
t→0

∥∥∥∥∫ t−1
(
eits − 1− its

)
dE(s)x

∥∥∥∥2

= lim
t→0

∫ ∣∣∣∣eits − 1
t

− is
∣∣∣∣2 dρx(s) = 0,

whenever (s 7→ s) ∈ L2(R, ρx). That is,

lim
t→0

1
t
(U(t)x− Ix) = iAx

whenever x ∈ D(Ê(id)) = D(A). Hence, iA is the infinitesimal generator of U , which
finishes the proof.

Now, we are prepared to prove Stone’s theorem.

Theorem C.9 (Stone). Let U be a strongly continuous unitary one-parameter group on
a Hilbert space H. Then there exists a uniquely determined self-adjoint operator A on
D(A) ⊆ H such that

U(t) = eitA

for all t ∈ R.

Proof. By Theorem 1.28, every strongly continuous unitary one-parameter group U pos-
sesses a skew-adjoint infinitesimal generator T . Setting −iT := A, we observe that A is
self-adjoint. Now, by Theorem C.8 the map t 7→ eitA defines another strongly continuous
one-parameter group with the same infinitesimal generator, hence the two groups agree
by Theorem 1.16.

C.3. Schur’s Lemma

In the final section of this text we will present another important application of spectral
theory in the context of representations. More precisely, it is our aim to characterize
those operators, which commute with all irreducible unitary Lie group representations.
The main theorem, known as Schur’s Lemma, was in turn used a key result to charac-
terize all irreducible representations of the Heisenberg group (cf. Theorem 2.49).

Throughout this section, T denotes a self-adjoint operator on a Hilbert space H with
spectral family E.

Proposition C.10. Let (fn)n be sequence of uniformly bounded complex-valued Borel
measurable functions on R.

(i) If fn → f uniformly, then Ê(fn)→ Ê(f) in the operator norm.
(ii) If fn → f pointwise, then Ê(fn)x → Ê(f)x for all x ∈ H, i.e., in the strong

operator topology.
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Proof. Note that f is bounded, and therefore f − fn, too.
(i) Since for any x ∈ {y ∈ H | ‖y‖ = 1} we have∥∥∥Ê(f)x− Ê(fn)x

∥∥∥2
=
∫

R
|f(t)− fn(t)|2 dρx(t) ≤ ‖x‖2 ‖f − fn‖2∞ → 0,

the same holds for the supremum over all such x.
(ii) Dominated convergence yields

lim
n→∞

∥∥∥Ê(f)x− Ê(fn)x
∥∥∥2

=
∫

R
lim
n→∞

|f(t)− fn(t)|2 dρx(t) = 0

for all x ∈ H.

Proposition C.11. If T is bounded, then the norm closure of the algebra A generated
by T contains Ê(f) for all continuous functions f on [−‖T‖ , ‖T‖].

Proof. The Weierstrass approximation theorem states that each such f can be uniformly
approximated by polynomials on [−‖T‖ , ‖T‖]. By Proposition C.10 (i) we conclude that
Ê(f) lies in A.

Remark C.12. Note that by Proposition C.10 (ii), Ê(f) is also contained in the strong
closure of A.

Proposition C.13. If T is bounded, then for any interval S ⊆ R, E(S) = Ê(χS) is in
the strong closure of A.

Proof. We clearly may approximate χS pointwise by continuous functions, so Proposition
C.10 (ii) and Remark C.12 give the result.

Proposition C.14. Let T be bounded and A ∈ L(H) such that TA = AT . Then
E(S)A = AE(S) for all intervals S ⊆ R.

Proof. It is easy to verify that A′ := {T ′ ∈ L(H) | T ′Ax = AT ′x ∀x ∈ H} forms an
algebra, and we observe that it is strongly closed since T ′nx→ T ′x, x ∈ H, implies

T ′Ax = lim
n→∞

T ′nAx = lim
n→∞

AT ′nx = A lim
n→∞

T ′nx = AT ′x.

Furthermore, we know that T ∈ A′, so A ⊆ A′. By Proposition C.13 we conclude that
E(S) ∈ A′.

Definition C.15. Let π1 and π2 be unitary representations of some Lie group G on
the Hilbert spaces H1 and H2, respectively. A bounded operator T : H1 → H2 is called
intertwining operator between π1 and π2 if it satisfies Tπ1(g) = π2(g)T for all g ∈ G.
The set of intertwining operators between π1 and π2 is denoted by C(π1, π2), and we say
π1 and π2 are unitarily equivalent if C(π1, π2) contains at least one unitary operator T .

Recall that a Lie group representation π is said to be irreducible if {0} and H are the
only π-invariant closed subspaces of H.
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Theorem C.16 (Schur’s Lemma). Let π be a unitary representation of some Lie group
G on some Hilbert space H. Then π is irreducible if and only if C(π, π) = {cI | c ∈ C}.
Proof. Both directions of the statement are proved by contradiction.

Thus, suppose there exists some non-trivial closed invariant subspace M and denote
by PM the orthogonal projection onto M . Then we have

〈π(g)PMx, y〉 = 〈π(g)PMx, PMy〉
=
〈
PMx, π(g−1)PMy

〉
=
〈
x, π(g−1)PMy

〉
= 〈PMπ(g)x, y〉

for all x, y ∈ H. Hence, PM ∈ C(π, π) = {cI | c ∈ C}, a contradiction.
Conversely, suppose that T ∈ C(π, π), T 6= cI for all c ∈ C. Unitarity of π yields

T ∗π(g) = T ∗π(g−1)∗ =
(
π(g−1)T

)∗ =
(
Tπ(g−1)

)∗ = π(g)T ∗

for all g ∈ G, hence T ∗ ∈ C(π, π). If we set Ag := {T ′ ∈ L(H) | T ′π(g) = π(g)T ′},
then C(π, π) is given by the closed algebra ∩g∈GAg. It follows that the operators T1 :=
1
2 (T ∗ + T ) and T2 := 1

2 i (T ∗ − T ) are in C(π, π). Two straightforward calculations show
that they are self-adjoint and not multiples of each other. Thus, at least one of them,
say T1, is not a multiple of I, either. If E1 denotes the spectral family of T1, then by
Theorem C.7 there exists an interval S such that E1(S) is neither the zero operator nor
the identity, and by Proposition C.13, E1(S) ∈ C(π, π). Hence, ran(E(S)) ⊂ H is a
non-trivial invariant closed subspace, again a contradiction.

The following two statements are immediate consequences of Schur’s Lemma.

Corollary C.17. Let π be an irreducible unitary representation of the Lie group G on
some Hilbert space H. If G1 is a commutative subgroup of G, then we have

π(G1) ⊆ {eitI | t ∈ [0, 2π]}.

Theorem C.18. Let π1 and π2 be irreducible unitary representations of G on H. Then
the algebra C(π1, π2) has either dimension 1 if π1 and π2 are unitarily equivalent or
dimension 0 otherwise.

Proof. Note that if T ∈ C(π1, π2), then by the same argument as in the proof of Theorem
C.16, we have T ∗ ∈ C(π1, π2), and T ∗T ∈ C(π1, π1). By Schur’s Lemma the (self-adjoint)
operator T ∗T must be of the form λI for some real number λ. Furthermore, we observe

〈Tx, Ty〉 = 〈T ∗Tx, y〉 = 〈λx, y〉 =
〈√

λx,
√
λy
〉
,

hence T =
√
λU for some unitary operator U ∈ C(π1, π2).

Now, in case that π1 and π2 are not unitarily equivalent, U - and thus T - must be
trivial, hence C(π1, π2) = {0}.

Otherwise, there exists a unitary operator U1 ∈ C(π1, π2), and U−1
1 T ∈ C(π1, π1). As

above we have U−1
1 T = cI for some c ∈ C, or equivalently T = cU1. We conclude that

C(π1, π2) = {cU1 | c ∈ C}.
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F field
K R or C
E,E1, F... vector space of F
B,B1, B2, ... real or complex Banach spaces
H,H1, H2, ... complex Hilbert spaces
E,E1, F... vector space of F
B∗ dual space of B
Lin(E,F ) space of linear maps from E1 to E2

Lin(E) space of linear maps from E to E
L(B1, B2) space of bounded linear maps from B1 to B2

L(B) space of bounded linear maps from B to B
HS(H1, H2) space of Hilbert-Schmidt operators from H1 to H2

HS(H) space of Hilbert-Schmidt operators from H to H
‖T‖ the operator norm of an operator T
‖T‖HS the Hilbert-Schmidt norm of an operator T
tr (T ) the trace of an operator T
ρ(T ) the resolvent set of an operator T
σ(T ) the spectrum of an operator T
RT the resolvent of an operator T
S(Rn) Schwartz space
S ′(Rn) space of tempered distributions
G,G1, G2, ... second countable Lie groups
g, g1, g2, ... Lie algebras
T the circle group {z ∈ C | |z| = 1}
Hn the (2n+ 1)-dimensional Heisenberg group
hn the (2n+ 1)-dimensional Heisenberg Lie algebra
X(G) space of smooth vector fields on G∧n T ∗e (G) set of alternating n-forms on the tangent space T ∗e (G)
Ωn(G) space of alternating differential n-forms on G∫
f(t) dt,

∫
f(x) dx, ... the (Bochner-) Lebesgue integral on R, Rn,...∫

f(g) dg the (Bochner-) Haar integral on the Lie group G∫
f(ω) dµ(g) the Bochner-µ integral on the measure space (Ω,A, µ)

(Ω,A, µ) measure space
Lp(Ω, µ) Lebesgue space arising from (Ω,A, µ)
Lp(Ω, X;µ) Bochner-Lebesgue space arising from (Ω,A, µ)
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Abstract

This text provides a detailed introduction to the concepts and basic tools of harmonic
analysis on the Heisenberg group Hn. The Heisenberg group is the ”simplest” and most
studied non-compact, non-commutative Lie group and it was the first of this type to
be thoroughly studied. For a non-compact, non-commutative Lie group representation
theory is no longer essentially finite-dimensional. Consequently, to study unitary repre-
sentations of Hn, we have to leave the realm of linear algebra and enter the territory of
functional analysis.

We collect all prerequisites in the first chapter. Starting with infinite-dimensional
representations of the (additive) real line we prove some basic facts on the latter and
eventually generalize to the case of Lie groups and their representations.

The second chapter, which is the core of this text, starts with the construction of
the Heisenberg group, involving from the very beginning what eventually turns out to
be its main representation, the so-called Schrödinger representation. Apart from some
interesting subgroups of Hn, its Lie algebra hn, etc., we learn about closely related
convolution algebras and their corresponding algebra representations, which are induced
by the Schrödinger representation. The main result of this chapter is a classification
of the irreducible unitary representations of the Heisenberg group, known as the Stone-
von Neumann theorem. Finally, we make use of this classification to define the group
Fourier transform for Hn, which is an operator-valued analogue of the ordinary Fourier
transform on Rn and shares some of its most important properties.

Along the way we put special emphasis on the Bochner integral, which is one possible
way of integrating Banach space-valued functions defined on a second-countable locally
compact measure space, thus, in particular, on second-countable Lie groups. Appendix
A gives a detailed presentation of the basic results, which are eventually used to extend
some classical theorems to the infinite-dimensional case.

Appendix B collects some important facts on Banach algebras and their representa-
tions in view of the convolution algebras appearing in Chapter 2.

Appendix C gives a brief account on the spectral theory of self-adjoint operators in
Hilbert space including detailed proofs of Stone’s theorem and Schur’s Lemma.
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Zusammenfassung

Die vorliegende Diplomarbeit ist der Einführung grundlegender Konzepte der harmonis-
chen Analyse auf der Heisenberggruppe Hn gewidmet. Da die Heisenberggruppe eine
nichtkommutative, nichtkompakte Lie-Gruppe ist (sie ist gewissermaßen das ”einfach-
ste” und daher Musterbeispiel einer solchen), sind die für die harmonische Analyse
benötigten irreduziblen, unitären Darstellungen von Hn nicht länger notwendigerweise
endlichdimensional. Zum Studium dieser Darstellungen werden daher Techniken der
Funktionalanalyis anstatt der sonst üblichen linearen Algebra verwendet.

Die wichtigsten Hilfsmittel und Begriffe werden im ersten Kapitel eingeführt. Als
Ausgangspunkt dazu dienen unendlichdimensionale Darstellungen der Gruppe (R,+),
für die zuerst einige essentielle Begriffe eingeführt und hilfreiche technische Resultate
bewiesen werden. Im Laufe des Kapitels werden schließlich sowohl erstere als auch
letztere auf den allgemeineren Fall einer beliebigen Lie-Gruppe und deren Darstellungen
erweitert.

Das zweite Kapitel bildet den Hauptteil der Arbeit. Angefangen mit der von der quan-
tenmechanischen Unschärferelation inspirierten Definition der Heisenberg-Lie-Algebra
hn wird mithilfe der Matrixexponentialfunktion aus hn die Heisenberggruppe Hn kon-
struiert. Dabei stellt sich heraus, dass die wichtigste Darstellung von Hn, die soge-
nannte Schrödingerdarstellung, als ”Exponential” jener Liealgebrendarstellung von hn

gewonnen wird, welche die Definition der Heisenberg-Lie-Algebra erst rechtfertigte. Wie
sich herausstellt, kann man diese durch h ∈ R∗ parametrisieren und erhält eine ganze
Familie von unitären Darstellungen, die von zentraler Bedeutung ist. Im weiteren Ver-
lauf des Kapitels werden verschiedene Arten der Konvolution von Funktionen auf Hn

diskutiert und daraus resultiernde Konvolutionsalgebren vorgestellt, deren Darstellungen
durch Integrieren der Schrödingerdarstellungen gewonnen werden. Die dazu vorgestell-
ten Techniken dienen später dem Beweis des Satzes von Stone und von Neumann, eines
grundlegend wichtigen Theorems, das eine Klassifizierung aller irreduziblen, unitären
Darstellungen von Hn liefert. Diese bereits erwähnten Darstellungen werden im letzten
Teil des zweiten Kapitels schließlich zur Einführung einer Fouriertransformierten auf
Hn verwendet. Diese definiert eine operatorwertige Funktion, die einige der wichtigsten
Eigenschaften der Fouriertransformierten auf Rn aufweist.

Den Abschluss bilden drei Appendizes, deren erster eine detaillierte Darstellung des
Bochnerintegrals bietet. Diese Integrationsmethode, die es erlaubt, banachraumwertige
Funktionen über Lie-Gruppen zu integrieren, ist von besonderer Bedeutung für einige
der wichtigsten Resultate der Arbeit. Appendix A führt dementsprechend die grundle-
genden Konzepte der Bochnermessbarkeit und -integrierbarkeit ein und bietet darüber
hinaus auch interessante Bochnererweiterungen klassischer Sätze wie etwa dem Satz von
Fubini, Lebesgues Satz der dominierten Konvergenz oder dem Hauptsatz der Analy-
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sis. Die Appendizes B und C sind Zusammenfassungen wichtiger Fakten zu Banach-
Algebren und ihren Darstellungen im Hinblick auf Konvolutionsalgebren, einerseits, und
der Spektraltheorie selbstadjungierter Operatoren einschließlich der detaillierten Beweise
des Satzes von Stone und des Lemmas von Schur, andererseits.
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Text zugrundeliegenden Materials, die dieser seinem langjährigen und treuen Schüler
erübrigt hat. Weiters dankt ihm der Author für die strengen, aber lehrreichen Ko-
rrekturen und die wegweisenden Ratschläge im Bezug auf das Erstellen einer wis-
senschaftlichen mathematischen Arbeit.

Der Autor bedankt sich weiters bei Michal Kunzinger und Günter Hörmann für ihre
freundliche Hilfe und das Teilen ihres enormen mathematischen Grundschatzes zu Be-
ginn der Arbeit. Ganz allgemein gilt des Autors Dank der DIANA-Gruppe, die ihre
Studentinnen und Studenten immer aufrichtig unterstützt und wärmstens empfängt,
wann immer sich letzere um Hilfe bittend an sie wenden.

Im Besonderen möchte sich der Autor bei seiner Familie, allen voran seinen Eltern und
Großeltern dafür bedanken, dass sie ihn bis zuletzt unterstützt haben, im materiellen
wie im moralischen Sinne. Sein Dank gilt weiters Manuel Corn und Markus Flotzinger,
die ihn oft mit Gaumenschmäusen beglückt haben, wenn der Autor selbst zu beschäftigt
war, um sich alltäglichen Dingen wie Einkaufen und Kochen zu widmen. Zudem dankt
der Autor der freundlichen und motivationsspendenden Gesellschaft von David Glück,
Christoph Spengler und Kristin Wehrkamp zu Höhne während unzähliger Wochen und
Monate, die sie gemeinsam arbeitend daheim und in der Universitätsbibliothek verbracht
haben.

Zu allerletzt bedankt sich der Autor bei der gesamten Belegschaft der Fakultät für
Mathematik für ihre Mühen, die sie zur Bildung ihres akademischen Nachwuchses
aufwendet, sowie für das Meistern sämtlicher bürokratischer Hürden auf dem Weg zum
Abschluss eines Studiums.
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