
MASTERARBEIT

Titel der Masterarbeit

”
Quantum Interference and Tomography of Linear Optical

Networks“

Verfasser

Christian Schmidt, BSc

angestrebter akademischer Grad

Master of Science (MSc)

Wien, 2014

Studienkennzahl lt. Studienblatt: A 066 876

Studienrichtung lt. Studienblatt: Masterstudium Physik

Betreuer: Assoz. Prof. Dr. Philip Walther









Contents

Abstract 6

Zusammenfassung 7

I. Introduction 10

II. The Quantum Theory of Linear Optics 14

A. Elements of Linear Optics 17

B. Linear Optical Quantum Networks 19

1. BosonSampling 20

2. N -Port Interferometer 22

III. The Parametric Down Conversion Photon Source 25

A. The Spectral Correlation Function 29

1. The Temporal Delay 33

2. Introducing Filtering 34

3. Schmidt or Singular Value Decomposition 36

IV. Quantum Interference in Linear Optical Networks 38

A. Two-Photon Correlation Measurements 38

1. An Example: The Hong-Ou-Mandel-Dip (HOM-Dip) 39

B. Two-Photon Correlation Measurement for a Passive Linear Optical

Circuit 40

1. Extraction of Visibilities from Experimental Data 45

V. Tomography of Passive Linear Optical Networks 46

A. Vienna 46

B. Bristol 50

C. Brisbane 56



1. Amplitudes 57

2. Phases 57

VI. Witness of Quality 59

VII. (Back)propagation of Errors 61

3. Backpropagation of Errors 61

VIII. Proposal: Extension and Improvement 64

IX. Improving the Description of Generalized Two-Photon

Quantum Interference in Linear Optical Waveguide Circuits 68

A. Further Investigations on Correlation Measurements Excluding

Filtering 69

1. The correlation factor Γ(θ) 70

2. The frequency mismatch factor χ 72

3. The temporal factor t 73

B. Impact on the Visibilities 76

C. Consequence of Neglecting Correlations 77

D. Including Filtering Processes 81

E. Visibility Extraction from Experimental Data 84

X. Network Tomography for Passive Linear Optical Networks 87

A. Backpropagation of Errors 87

B. Forwardpropagation of Errors 93

1. Brisbane 93

2. Bristol 94

C. Experimental Results for ’Bristol’ and ’Brisbane’ 96

1. Brisbane 97

2. Bristol 98



D. Summary of the Results 98

E. Extension and Improvement 100

XI. Conclusion & Outlook 104

XII. Normalization of the JSA and Filter Function 106

XIII. Experimental Values for the JSA and Filter 107

XIV. Extracted Experimental Visibilities when Correlations are

Neglected 108

XV. Dataset Obtained for “Brisbane” 111

XVI. Dataset Obtained for “Bristol” 113

XVII. BosonSampling Unitary 114

References 116



5



Abstract

Quantum interference in passive linear optical networks has recently attracted

great interest in the field of optical quantum computation. Recent technological

progress allowed the fabrication of large integrated interferometric networks that

are composed out of many beam splitters and phase shifting elements. A major

issue is the reliable tomography of such networks.

Surprisingly, the quantum interference of two photons in the network is sufficient

to provide a high quality set of data for tomography purposes. In this thesis, the

model for two-photon interference in linear optical networks is improved. This de-

tailed description is based on a precise modeling of the input state, which includes

modal mismatch originating from the parametric down conversion process as well

as unavoidable frequency correlations.

Then current approaches to tomography of linear optical networks are investigated

and benchmarked. It is important to distinguish the approaches into those using a

sufficient set of primary data (passive) and those utilizing an over-sufficient set of

data (active). It is conjectured that active approaches exhibit better error robust-

ness than the currently known passive schemes, providing analytical and numerical

evidence for this conjecture. This is the main reason that active approaches gen-

erate better approximations of the actual network in comparison to passive ones.

A major drawback of active approaches has been their inability to reconstruct opti-

cal black boxes, i.e. networks of unknown structure. Here a novel hybrid-approach

is proposed which combines the advantages of active and passive methods, while

eliminating their shortcomings.

Finally, the potential of this hybrid-approach is validated numerically, showing

that it outperforms all currently utilized approaches.
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Zusammenfassung

Passive linear optische Netzwerke und Ihre Anwendung in Quantenoptik-

Experimenten hat jüngst vielfältige Aufmerksamkeit auf sich gezogen. Neue

Fabrikationsmethoden ermöglichen die Herstellung großer integrierter interfer-

ometrischer Netzwerken, die aus einzelnen Strahlenteiler- und Phasenschieber-

Elementen zusammengesetzt sind. Eine große Herausforderung ist allerdings die

quantitativ zuverlässige Charakterisierung oder tomographische Rekonstruierung

dieser Netzwerke.

Erstaunlicher Weise ist die Detektion von Zwei-Photonen Interferenzereignissen

ausreichend für diese Zwecke. In dieser Arbeit wird die Beschreibung von Zwei-

Photonen Interferenzereignissen in linear optischen Netzwerken erweitert und

verbessert, was eine nötige Voraussetzung für die zuverlässige Charakterisierung

ist. Das hierfür herangezogene Modell basiert auf einer detaillierten Beschrei-

bung des Eingangszustands, die Frequenzkorrelationen, sowie die andere Moden-

Diskrepanzen der Ein-Photonen Quelle mit einbezieht.

Hiernach werden gegenwärtige Ansätze zur Tomographie von linearen optischen

Netzwerken untersucht und bewertet. Es wird unterscheiden zwischen jenen Meth-

oden, die ein über-bestimmte Menge an Primärdaten nutzen (aktiv) und denen,

die eine ausreichende Menge verwenden (passiv). Damit kann behauptet werden,

dass aktive Ansätze wie eine bessere Fehlerrobustheit besitzen als die gegenwär-

tig bekannten passiven Herangehensweisen. Weiter werden numerische und an-

alytische Evidenz für diese Behauptung geliefert. Die Fehlerrobustheit ist der

entscheidende Grund dafür, dass aktive Ansätze eine bessere Approximation des

zugrundeliegenden Netzwerkes liefern.

Bis jetzt war ein großes Nachteil des aktiven Ansatzes allerdings, dass es sich nicht

auf Black-Box-artige Netzwerke, also Netzwerke unbekannter Struktur, anwenden

ließ. Wir schlagen eine neuartige Herangehensweise vor, die dieses Problem löst

und die passiven Ansätze mit dem aktiven Ansatz so kombiniert, dass die jeweiligen
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Nachteile beseitigt werden und die Vorteile beider Methoden in einer kombinierten

Version zum tragen kommen.

Abschließend wird numerisch gezeigt, dass dieser Ansatz alle gegenwärtig

genutzten an Präzision übertrifft.
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I. INTRODUCTION

After the pioneering work of Planck [1] and subsequently by Schrödinger, Heisen-

berg, Bohr, Pauli, Dirac and many others in the beginning of the 19th century,

the field of quantum mechanics had spawned many new developments in Physics.

Quantum information and quantum computation is prominent example. The ma-

jor promise, increasing the computational efficiency with respect to classical com-

puters, is believed to be crucial for simulating and solving many fundamental

problems in science [2–7].

Quantum computation has been subject to many major developments in the last

decades, and many promising approaches towards its physical implementation ex-

ist. Experimental approaches to encode quantum information reach from photons

to trapped ions, nuclear magnetic resonance, quantum dots, dopants in solids,

superconductors, and other systems [8].

Utilizing photons as quantum bits (qubits) has attracted vast attention ever since

Knill, Laflamme and Milburn (KLM) proposed their seminal scheme for efficient

quantum computation with linear optics in 2001 [9] and the measurement bases

quantum computing by Raussendorf et al. [10].

In 2013 Aaronson and Arkhipov introduced a rudimentary quantum computer,

often referred to as BosonSampling [11]. This entirely passive scheme solves a

sampling problem that is intractable on a classical computer efficiently.1 An ex-

perimental realization of BosonSampling, for large instances of photons (N ≈ 30),

would provide strong evidence against the extended Church-Turing Thesis, which

states that all computational problems that are efficiently solvable by a realistic

physical device, are efficiently solvable by a probabilistic Turing machine [11, 12].

The KLM scheme requires ancillary photons and adaptive measurements whereas

1 Mathematically speaking their result is just a conjecture. However, the unproven assumptions
are reasonable and widely believed to be true.
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BosonSampling implements a classically hard problem by utilizing exclusively re-

source efficient passive optical elements.

The recent experimental breakthrough in implementing large scale networks for

photonic quantum computing is accomplished by utilizing integrated optical cir-

cuits [13–16]. These waveguide circuits offer better scalability by shrinking bulk

optics into microchip scale devices and are interferometric stable which makes

them the current state-of-the-art for linear optical quantum computing.

Generating the necessary computational state – the optical qubits – is still

challanging. Today, the most prominent implementation of such photon sources

are parametric down converters (PDC) that exploit nonlinear crystals to sponta-

neously emit pairs of photons [17–20]. Research on single-photon PDC-sources

dates back to the work of Louisell [17] and Burnham and Weinberg [18]. This

effect has been used in many quantum optics applications and is up to now a

nearly inevitable source for optical qubits [8, 21–23].

For decades the common method to manipulate photonic qubits has been bulk

optical elements acting on e.g. the spatial or polarization degree of freedom.

Usually multiple optical elements are cascaded to form interferometers. Embed-

ding those interferometers in integrated optical chips significantly improves their

interferometric stability. However, it is extremely challenging to trace slight fabri-

cation imperfections of each optical element back due to the embedded structure.

Therefore a key point is the characterization or tomography of the integrated

linear optical circuits. In the last two years three different approaches, ’Bristol’

[24], ’Brisbane’ [25] and ’Vienna’ [26], have been applied for the tomography of

such networks. Until now no systematic benchmark has been carried out hence

their respective performance remains unknown.

In this thesis two issues will be adressed. First, the quantum interference in passive
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linear optical networks which is strongly related to the properties of the single-

photon sources. The quantum nature of n-photon interference can be characterized

by the nth-order correlation function [27]. In particular a detailed investigation of

the 2nd -order correlation function is necessary as an elaborate model is required

for the network tomography schemes in [24, 26]. Subsequently, I will investigate

the different approaches to network tomography and give an explicit analysis of

their respective performances under realistic experimental conditions. Eventually

a new hybrid-approach that outperforms the current methods will be proposed

and investigated.
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Methods
In this and the following section all methods and concepts necessary will be in-

troduced. However, familiarity with the basic methods and concepts of quantum

mechanics, quantum computation and quantum information will be assumed (for

an introduction see for instance [7]) as well as the standard mathematical tech-

niques. Notations will be introduced were it seems most suitable.

The first section of the methods will cover the theoretical framework of linear

quantum optics and other fundamental ideas needed. This will be followed by a

brief introduction of the different approaches [24–26] to characterize linear optical

networks that will be investigated. In the last section additional statistical and

numerical methods will be discussed.

II. THE QUANTUM THEORY OF LINEAR OPTICS

Starting point is the quantum mechanical treatment of optical fields. Namely

the quantization of the electromagnetic field which is classically governed by the

Maxwell-Equations [27].

In the framework of quantum mechanics the electromagnetic field is described by

its quantized states of oscillation. Or more formally the electromagnetic field can

be expanded into its (positive and negative) frequency parts

Ê(r, t) =

∞̂

−∞

dω ê(ω, r) e−iωt. (1)

Bold symbols indicate matrices (vectors) throughout this thesis. For now (1) is

nothing but the Fourier representation. (1) can be decomposed into positive and
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negative frequency parts

Ê(r, t) = Ê(+)(r, t) + Ê(−)(r, t) (2)

that are given by

Ê(+)(r, t) =

∞̂

0

dω ê(ω, r) e−iωt (3)

Ê(−)(r, t) =
∞̂

0

dω ê†(ω, r) e−iωt. (4)

Where the Hermitian property of the electromagnetic field Ê = Ê† (note that

hence Ê(+)† = Ê(−)) has been used. From now on the calculations will always be

restrict to r ≡ z.

For a field in a lossless dielectric material the operators take the form [28]

Ê(+)(z, t) = Ê(−)†(z, t) =
ˆ

dω i

[
�ω

4πε0cAn(ω)

] 1
2

︸ ︷︷ ︸
:=A(ω)

â(ω) ei (k(ω)z−ωt). (5)

Where ε0 is the vacuum permittivity, c the speed of light, A the cross-sectional

area in the xy plane and n(ω) the refractive index.

The annihilation operator â(ω) and its adjoint, the creation operator â†(ω), are

the quantum mechanic harmonic oscillator operators and for now restricted to the

frequency modes. Later additional (discrete) modes will be introduced which can

encode additional degrees of freedom, such as polarization or spatial modes. As

is well known these operators act on the Fock basis in the following manner: The

annihilation operator â(ω) is annihilating a photon of frequency (in the oscillation

mode) ω and the creation operator is creating one with frequency (in the oscillation
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mode) ω.

â(ω) |N(ω)〉 =
√
N(ω) |N(ω)− 1〉

â†(ω) |N(ω)〉 =
√
N(ω) + 1 |N(ω) + 1〉 . (6)

Here the occupation number N(ω) is the total number of photons of frequency ω.

From (6) one may define N̂(ω) ≡ â†(ω)â(ω) as the number operator that acts on

a Fock state as follows: N̂(ω) |N(ω)〉 = N(ω) |N(ω)〉. These basic operators obey

the following commutation relations

[â(ω), â†(ω′)] = δ(ω − ω′) and

[â(ω), â(ω′)] = [â†(ω), â†(ω′)] = 0 . (7)

Now that a quantum version of the electromagnetic field has been accomplished,

the main building blocks for linear optical quantum computing can be introduced.

Most generally speaking linear optics consists of all the elements whose Hamilto-

nians are of the form

Ĥ =
∑
kl

Mlkâ
†
kâl, (8)

or that can be mapped on such a Hamiltonian under a linear transformation of the

annihilation and creation operators. However, here it shall be enough to restrict

ourselves to the subset of Hamiltonians that is preserving the total number of

photons, i.e. [Ĥ, N̂ ] = 0.

Within the scope of this thesis mainly the phase shifter and beam splitter are of

interest. However, for completeness also the polarizing beam splitter and polar-

ization rotations will be introduced. Note that in the following � is usually set to

one.
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(a) (b)

Figure 1: Figurative illustration of (a) a lossless beam splitter with transmission
amplitude cos θ and (b) a polarizing beam splitter – taken from [21].

A. Elements of Linear Optics

The Single Mode Phase Shifter (PS) varies the phase of the electromagnetic field

in a particular mode a (Fig. 1a)

ĤPS = ϕ â†inâin. (9)

Then the evolution of an operator ô can be obtained in the interaction picture by

eiĤPSt ô e−iĤPSt and if the time dependence is absorbed into ϕ the evolution of a

given mode can eventually be written as

â†out = eiϕâ†in. (10)

The Lossless Beam Splitter (BS) is converging input state âin (b̂in) into a linear
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superposition of output states

â†out = cos θ â†in + ie−iϕ sin θ b̂†in

b̂†out = ieiϕ sin θ â†in + cos θ b̂†in. (11)

And consequently the Hamiltonian can be written as

ĤBS = θ eiϕâ†inb̂in + θ e−iϕâinb̂
†
in. (12)

Physically speaking, when a photon arrives at the BS in mode ain, it is transmitted

with probability |T |2 = cos2 θ and reflected with probability |R|2 = 1−|T |2 = sin2 θ

and vice versa if it arrives in mode bin. Additionally the two possible events can

pick up the relative phase shift ie±iϕ.

Mathematically speaking, (11) is one possible way to parametrize the special uni-

tary group SU(2) and θ and ϕ are the angles of rotation on the Poincaré sphere.

In that way the unitary constraints of (lossless) evolutions in quantum mechanics

are satisfied. However, ϕ is just a phase in the input modes and the constraints

are still satisfied when we choose it to be ϕ = π
2
. Thus we end up with the very

handy and intuitive representation of the BS

B =

⎛
⎝T −R∗

R T ∗

⎞
⎠ =

⎛
⎝cos θ − sin θ

sin θ cos θ

⎞
⎠ , (13)

which is just an arbitrary two dimensional rotation.

The Polarization Rotation can be treated in the same manner, with the only

difference that the modes being rotated are not spatial (a, b), but polarization
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modes, i.e. some set of orthogonal coordinates x and y

â†x′ = cos θ â†x + ie−iϕ sin θ â†y

â†y′ = ieiϕ sin θ â†x + cos θ â†y. (14)

Where â†μ creates a photon with polarization μ, with μ ∈ {x, y}.
The Polarizing Beam Splitter (PBS) is a polarization sensitive beam splitter that

transmits a photon of one particular mode of polarization, for example horizon-

tally polarized, while it reflects photons with orthogonal polarization, for example

vertically polarized, independently of the spatial modes a, b the photons are in

(Fig. 1b). This can be formalized in the following notation for the in- and output

transformations

âin,H → âout,H

b̂in,H → b̂out,H

and
âin,V → b̂out,V

b̂in,V → âout,V .
(15)

B. Linear Optical Quantum Networks

Figure 2: Black box like abstraction of a passive linear optical circuits with M
in- and output modes. Any passive linear optical circuit can be seen as a unitary
transformation of a input state into an output state.

With the elements introduced above one can set up any passive linear optical cir-

cuit (PLOC). Note that passive linear optical circuits are not known to be universal
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for the bounded error quantum polynomial time complexity class (BQP) unless we

allow adaptive measurements [9, 11]. However, as pointed out in the introduction,

such passive circuits are of great interest for various quantum computational ap-

plications and in this work we will merely be concerned about these passive linear

optical circuits.

Such a general passive circuit can be seen as a unitary transformation U of the set

of incoming modes (Fig. 2).

Let the tth input mode be described by â†t . Then we might define a circuit of M

modes to apply the following transformation to a photon in mode t

â†t →
M∑
k=1

ukt â
†
k. (16)

For an input of more than one photon we need to apply (16) to each of the creation

operators â†t appearing in the input.

Note that technically the two matrix representations

U = D(μ)U′ D(ν), (17)

where D(μ) = diag(eiμ1 , eiμ2 , . . . , eiμm), yield the same observable results and thus

represent the same physical network. Or in other words: global in- and output

phases can not be determined and are therefore regarded as trivial in quantum

mechanics.

At this point it is suitable to insert an interlude and introduce what is commonly

known as BosonSampling [11].

1. BosonSampling

The problem can be stated as follows:

Alice inputs a Fock state |in〉 into a network U which is drawn from the Haar
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measure [11, 29]. Note that in the standard version Alice inputs the standard

initial state |1n〉 := â†1â
†
2 · · · â†n |0〉. U operates on |in〉, according to (16) and thus

the different modes interfere and the probability amplitudes mix according to the

unitary transformation that is imposed. Subsequently Bob takes a measurement on

the output side of the network, i.e. Bob samples from the probability distribution

over all possible outputs weighted by their corresponding coefficients.

As we shall see, the probability distribution is connected to the permanent of an

N ×N matrix A

Per(A) =
∑
σ∈SN

N∏
i=1

ai,σ(i) , (18)

where Sn is the set of all permutations of the symmetric group SN .

A general Fock input state of N photons can be written as

|in〉 = |T 〉 ≡
∑

T=(t1,...,tM )

αT

(
â†1
)t1

· · ·
(
â†M
)tM

|0〉 . (19)

Here T goes over all possible tupels such that t1 + · · · + tM = N , |0〉 is the

vacuum state: 〈0| â†t = 0, and αT are the corresponding amplitudes occurring in

the superposition. Similarly the output can be written as

|out〉 = |S〉 ≡
∑

S=(s1,...,sM )

βS

(
â†1
)s1

· · ·
(
â†M
)sM

|0〉 . (20)

The probability that Bob measures the N -photon output |S〉, given the N photon

input |T 〉 and M ×M unitary transformation U is then given by P|S〉,|T 〉

P|S〉,|T 〉 =
|Per(UT,S)|2

s1! · · · sm!t1! · · · tm!
. (21)

The N ×N matrix UT,S is defined by first taking ti copies of the ith column which

leads to am matrix UT . Then take sj copies of the jth row of UT . The result is
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UT,S.

Remark : Aaronson and Arkhipov [11] gave strong evidence that if there exists a

polynomial-time classical algorithm for approximating (21) for a matrix of complex

entries UT,S ∈ C
N×N the polynomial hierarchy collapses. This is a striking result

since successfully sampling from (21) for large instances of photons (N ≈ 30)

would give strong evidence against the extended Church-Turing Thesis that says

that all computational problems that are efficiently solvable by a realistic physical

device, are efficiently solvable by a probabilistic Turing machine [11, 12]. Let us

now get back to the circuit itself.

2. N -Port Interferometer

Figure 3: The beam splitter device with transmission amplitude cos θ and phase
ϕ in mode q as the main building block for any unitary transformation. It is
essentially a beam splitter with an additional phase shift in one of the output
modes, but can also be implemented in an analogous manner by a Mach-Zehnder
interferometer.

As introduced above, a passive linear optical circuit with M modes is formally

described by an M × M unitary transformation U(M). However, this is leaving

open the question of how to implement such a network in a laboratory. Fortunately,

Reck et al. [30] could show that it is possible to decompose any M ×M unitary

into a product of unitary beam splitter transformations Tp,q acting on at most two
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modes p, q (p > q). The maximum number of beam splitter devices needed is(
M
2

)
= M(M−1)

2
, i.e. only quadratic in M .

q p

Tp,q := Tp,q ⊗ I =

q

p

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I
...

...

· · · eiϕ sin θ · · · eiϕ cos θ · · ·
... I

...

· · · cos θ · · · − sin θ · · ·
...

... I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(22)

Where I is the identity matrix, θ parametrizes the beam splitting ratio and ϕ the

phase in the output mode q (Fig.3). Here we have adapted the definition made by

Reck et al. in the original paper which is slightly different, though equivalent, to

(11). One only has to rename the output modes.

The algorithmic proof of the decomposition into such building blocks goes as fol-

lows. Given an arbitrary unitary U(M) we right multiply it with TM,M−1 · · ·TM,1

to eliminate the last row (and column, by unitarity) except for the diagonal el-

ement. Subsequently we right multiply it by appropriate TM−1,M−2 · · ·TM−1,1 to

zero out all not diagonal elements of the (M − 1)th row and column. This can

be repeated until only diagonal elements are left, which can be turned into ones

by right multiplying the appropriate diagonal matrix D. Hence we have imple-

mented the inverse operation U(M)−1 = U(M)†. In general the transformation

just established is rotating one of the unit vectors (0, . . . , 0, 1, 0, . . . , 0) into an ar-

bitrary M -dimensional vector, parametrized by generalized spherical coordinates

θ1, . . . θM−1 and the phases ϕ1, . . . , ϕM−1.

A generalized M -dimensional unitary transformation can be written as a stack of

M such vectors. Therefore we can find a mapping for any unitary transformation
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into physical devices building up an M -port interferometer parametrized by
(
M
2

)
beam splitter ratios and

(
M
2

)
phases. Note that this is not a unique mapping, i.e.

a certain unitary can also have a physical realization differing from the one just

introduced.

So far we have mainly focused on the network properties itself. As already intro-

duced in the BosonSampling interlude, for physical applications these networks are

operating on states. For that reason let us now draw our attention to the input to

these networks (and the resulting output).

Figure 4: (4) Representation of a general M -port interferometer that is applying
the unitary transformation U(M). Readapted from [21].

24



III. THE PARAMETRIC DOWN CONVERSION PHOTON SOURCE

Figure 5: In a parametric down conversion photon source, photons are produced
by pumping a nonlinear χ2 crystal. Inside the crystal a pump photon can sponta-
neously decay into two photons: the so called “signal” and “idler” photon. Figure
taken from [31].

Different from the ideal, frequency independent input states in the BosonSampling

example, the physical reality of what can be achieved to date looks different. This

section shall be devoted to a description of these more realistic conditions by

introducing the predominant parametric down conversion source and its properties.

We first investigate the properties of the parametric down conversion (PDC) pho-

ton source that is utilized to carry out many quantum optics experiments. The

PDC process is a scattering process inside a χ2 crystal - i.e. a nonlinear process

- in which one photon of an incident electromagnetic field decays spontaneously

(that’s why it is often abbreviated as SPDC) into two photons obeying energy

and momentum conservation (Fig. 5). It has been intensively studied ever since

the first experiments by Burnham and Weinberg in 1970 [18]. Up to now it is

the most utilized method to create single-photon Fock states in quantum optics

laboratories.

The PDC interaction Hamiltonian of the pump field with the signal and idler fields
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reads [32, 33]

Ĥ(t) =
ε0
3

∑
ijk

χ
(2)
ijk

L
2ˆ

−L
2

dz Ê
(p)
i (z, t)Êj(z, t)Êk(z, t). (23)

For a crystal of length L (where the origin of the coordinate system has been

chosen in the center of the crystal), pump field Ê(p) and outgoing fields Êi and

Êj (recall that Ê† = Ê), i, j, k are describing the different polarizations and χ
(2)
ijk

is a tensor depending on the crystal properties. We will now restrict ourselves

to uniaxial crystals and only consider the quadratic term. This so called type-II

PDC can formally be put in the following interaction Hamiltonian for the three

interacting modes

Ĥ(t) =
ε0
3
χ(2)

L
2ˆ

−L
2

dz Ê(p)
p (z, t)Ês(z, t)Êi(z, t). (24)

With (2) we may write

Ĥ(t) =
ε0
3
χ(2)

L
2ˆ

−L
2

dz
(
Ê(+)

p (z, t) + Ê(−)
p (z, t)

)
(25)

(
Ê(−)

s (z, t) + Ê(+)
s (z, t)

)(
Ê

(−)
i (z, t) + Ê

(+)
i (z, t)

)
.

In the last step we apply the rotating wave approximation [34] in which we can

neglect all processes different from the pump photon decay into one signal and one

idler photon and the reverse process were the signal and idler photon decay into

a pump photon (the Hermitian conjugate of the previous one that is guaranteeing
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the Hermitian property of the Hamiltonian)

Ĥ(t) =
ε0
3
χ(2)

L
2ˆ

−L
2

dz Ê(+)
p (z, t)Ê(−)

s (z, t)Ê
(−)
i (z, t) + H.c. (26)

The positive frequency parts for Ê
(+)
μ (z, t) are given by (5). Let us introduce

two further approximations. First, A(ω) is a slowly varying function of frequency

[23] and can thus be taken outside the integral in (26) . Second, PDC is a very

inefficient process and to obtain suitable photon numbers the pump field must be

large. Hence the pump field Ê
(+)
p (z, t) might be treated as classical field. In the

Fourier representation we have

E(+)
p (z, t) = AP

ˆ
dωp α(ωp) e

i(kp(ωp)z−ωpt). (27)

Now, if we plug (27) and (5) into (26) and make use of the A(ω) ≈ const. approx-

imation, we may write

ĤPDC(t) = A

L
2ˆ

−L
2

dz

∞̂

−∞

dωp

∞̂

−∞

dωs

∞̂

−∞

dωiα(ωp) e
i[(kp(ωp)−ki(ωi)−ks(ωs))·z−(ωp−ωi−ωs)·t]

â†s(ωs)â
†
i (ωi) + H.c. (28)

Where we have combined all constants in A.

In the interaction picture the state evolution is given by

|ψ〉PDC = T exp

[
− i

�

ˆ t

t0

dt′ ĤPDC(t
′)
]
, (29)

where T is the time ordering operator that is taking account for the fact that the

PDC interaction Hamiltonian does not commute in time [35]. In the extend of this
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thesis we shall only work with the first order perturbation of (29). That is

|ψ〉PDC ≈ |0〉+ 1

i�

ˆ t

t0

dt′ĤPDC(t
′) |0〉 (30)

Furthermore we extend the range of integration to minus- and plus infinity. This

assumes that before t0 the pump field is zero and that we consider times long after

the interaction, i.e. the interaction Hamiltonian vanishes before t0 and after t.

This enables us to carry out the time integral in (30) yielding 2πδ(ωp − ωs − ωi)

which makes it trivial to carry out the ωp integral as well. Introducing

Δk(ωs, ωi) = kp(ωs + ωi)− ks(ωs)− ki(ωi) (31)

we obtain

|ψ〉PDC =
2πA

i�

L
2ˆ

−L
2

dz

ˆ
dωs

ˆ
dωi α(ωs + ωi) e

iΔk(ωs,ωi)·z â†s(ωs)â
†
i (ωi) |0〉 . (32)

The part corresponding to the Hermitian conjugate vanishes due to (6) (â(ω) |0〉 =
0). The remaining z integration gives

|ψ〉PDC =
2πA

i�
· L︸ ︷︷ ︸

=B

ˆ
dωs

ˆ
dωiα(ωs + ωi)

sin
(
Δk(ωs, ωi) · L

2

)
Δk(ωs, ωi) · L

2︸ ︷︷ ︸
=:φ(ωs,ωi)

· (33)

â†s(ωs)â
†
i (ωi) |0〉 .

Which can be written more compact by introducing the joint spectral amplitude

(JSA) f(ωs, ωi) = α(ωs + ωi) · φ(ωs, ωi).

|ψ〉PDC = B

ˆ
dωs

ˆ
dωi f(ωs, ωi) â

†
s(ωs)â

†
i (ωi) |0〉 (34)
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The joint spectral amplitude, also known as spectral correlation function and it is

the product of the pump envelope α(ωs + ωi) with the phase matching function

φ(ωs, ωi). The joint spectral amplitude f(ωs, ωi) contains all the properties of the

PDC source and shall be subject to further investigation in the following.

Figure 6: Exemplary spectral correlation function, composed of the product of
the pump envelope α(ωs + ωi) and the phase matching function φ(ωs, ωi). Here
without the Gaussian approximation for the phase matching function. Taken from
[31].

A. The Spectral Correlation Function

To study the spectral correlation function analytically, some further approxima-

tions and assumptions have to be made.

The first assumption is a Gaussian pump envelope:

α(ωs + ωi) ∝ e
− (ωp−ω0

p)
2

2σ2
p . (35)

Other approximations made are the Gaussian approximation for φ(ωs, ωi) and the

linear expansion of Δk(ωs, ωi). The Gaussian approximation reads

sinc(x) ≈ e−γx2

, γ = 0.193 . (36)
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And for the expansion of (31) around the central frequencies ω0
μ we find

Δk(ωs, ωi) ≈ (37)

Δk(ω0
s , ω

0
i ) +

∂Δk(ωs, ωi)

∂ωs

∣∣∣∣ω
0
s , ω

0
i

(ωs − ω0
s) +

∂Δk(ωs, ωi)

∂ωi

∣∣∣∣ω
0
s , ω

0
i

(ωi − ω0
i ) .

Introducing the group velocity mismatch κμ =
dkμ(ω0

μ)

dωμ
− dkp(ω0

p)

dωp
and the mismatch

– as κμ is always expressed with respect to the group velocity of the pump – from

the central frequencies νμ = ωμ − ω0
μ and considering momentum conservation

Δk(ω0
s , ω

0
i ) = 0, the phase matching function (omitting the constant) then becomes

φ(νs, νi) ≈ e−γ L2

4
(κsνs+κiνi)

2

(38)

Thus, the spectral correlation function takes the form

f(νs, νi) = α(νs, νi)φ(νs, νi) ≈
1√
N

e−γ L2

4
(κsνs+κiνi)

2 · e−
(νs+νi)

2

2σ2
p (39)

Bare in mind that we have introduced νμ as new variables, i.e. we have changed

the reference frame, which will be important whenever one wants to calculate (34)

explicitly. Additional we made a slight change in notation and introduced the

1/
√
N instead of B that is taking care of normalization.
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(a) (b)

Figure 7: Composition and parameterization of the joint spectral amplitude (JSA).
(a) Sketch of an examplary spectral correlation function f , formed by the phase
matching function φ and the pump envelope α. (b) Parametrization of the ellipse
by its major and minor axis σl and σk, and the angle of the major axis θ to the ωs

axis.

To enable a more intuitive view on the spectral correlation function and since it

will be of great use in general, it might be useful to rewrite (39) in the following

manner

f(νs, νi) = B exp

[
−1

2
νTMν

]
. (40)

Which is just the matrix representation of the argument of the exponential function

with νT = (νs, νi) = (ωs − ω0
s , ωi − ω0

i ) and

M =

⎛
⎝ 1

σ2
p
+ γ L2

2
κ2
s

1
σ2
p
+ γ L2

2
κsκi

1
σ2
p
+ γ L2

2
κsκi

1
σ2
p
+ γ L2

2
κ2
i

⎞
⎠ . (41)

Here (40) is the bivariate normal distribution, which is well known and has been

subject to extensive studies in mathematics as well as physics.
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The matrix M depends on the crystal and pump properties. Varying these pa-

rameters allows us to manufacture different JSAs.

Note that νTMν = const. represents an ellipse in the ωs − ωi-plane centered at

(ω0
s , ω

0
i ). The direction of the two axis of the ellipse are given by the eigenvectors

of M−1 and the extend of the great and small radii is given by r
√

λ1/2, where λμ

is the respective eigenvalue [36]. Hence restricting oneself to the eigenvectors and

eigenvalues of M already provides full information about shape of the JSA. The

eigenvalues are reading

λ1,2 =
1

σ2
p

+ γ(κ2
s + κ2

i )
L2

4
±
√

1

σ4
p

+ γ2(κ2
s + κ2

i )
2
L4

16
+ γ

κsκi

σ2
p

L . (42)

But since M and therefore f(νs, νi) can be parametrized as an ellipse, we might

as well choose the most convenient way to do so. Instead of restricting ourselves

to the parametrization in (41) we now introduce a much handier one in which the

ellipse M is parametrized by a long and a short axis, σl and σk respectively, and

an additional angle θ that defines the angle between the long axis of the ellipse

and the ωs-axis

M(σk, σk, θ) =

⎛
⎝ cos2 θ

σ2
l

+ sin2 θ
σ2
k

sin θ cos θ
(

1
σ2
l
− 1

σ2
s

)
sin θ cos θ

(
1
σ2
l
− 1

σ2
s

)
cos2 θ
σ2
k

+ sin2 θ
σ2
l

⎞
⎠ . (43)

At this point a very intuitive access to frequency correlations can be given [37–39].

A state is correlated in two variables, whenever it cannot be written as a product

state of two functions that depend on just one of the variables respectively. Now

(41) can be factorized into its two frequency parts whenever either the axis of the

ellipse are equal or the angle θ is an integer multiple of π
2
. Therefore (43) contains

all necessary information about the frequency correlations and (40) is factorizable

in the ωsωi system whenever the off-diagonal elements of (43) vanish. As we shall

see in the next section it is possible to define a quantitative measure by use of
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the Schmidt modes of the spectral correlation function. Let us also introduce

the following notation: The range 0 < θ < π
2

shall be called the correlated case,

whereas −π
2
< θ < 0 shall be called the anti-correlated case. Since M is π-periodic

in θ it is enough to restrict θ to −π
2
≤ θ ≤ π

2
(or likewise 0 ≤ θ ≤ π).

Prior to this, let us introduce some modifications of the spectral correlation func-

tion that will be necessary to describe general quantum interference events. We

have derived (40) as the spectral weights in the PDC state in (34). However, we

have implicitly ignored the time delay between the signal and idler mode as well

as filtering processes that might be – and in most quantum optics applications will

be – performed on the PDC state.

1. The Temporal Delay

A temporal delay in mode μ introduces a phase eiωμτμ to the JSA f(νs, νi) and

therefore if we introduce temporal delays to signal and idler modes

f(νs, νi) → β(νs,νi; τs, τi) = f(νs, νi) · ei(νs+ω0
s)τs · ei(νi+ω0

i )τi . (44)

Introducing τ T = (τs, τi) and ωT
0 = (ω0

s , ω
0
i ), equation (44) can also be written as

β(ωs,ωi; τs, τi) =
1√
N

exp

[
−1

2
(ω − ω0)

TM(ω − ω0) + iωTτ

]
. (45)

For the explicit form of 1√
N

see XII.
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2. Introducing Filtering

The process of filtering in the frequency domain can be modeled by a frequency

dependent beam splitter [37–39]. Similar to (11) we obtain

â†μ(ω) → Tμ(ω)â
†
μ(ω) +R(ω)v̂†(ω). (46)

Where v̂†(ω) is introducing the vacuum state to the system and Tμ(ω) is the filter

function that describes the shape of the filter in mode μ and |T (ω)|2+ |R(ω)|2 = 1.

Inserting (46) and (45) into (34) it is easy to find that the PDC state eventually

takes the form

|ψ〉PDC =

ˆ ˆ
dωsdωi β(ωs,ωi; τs, τi)Ts(ωs)Ti(ωi)︸ ︷︷ ︸

:=β(F)(ωs,ωi)

â†s(ωs)â
†
i (ωi) |0〉

=

ˆ ˆ
dωsdωi β

(F)(ωs, ωi) â
†
s(ωs)â

†
i (ωi) |0〉 . (47)

The explicit form of βF(ωs, ωi) depends on the applied filters and in the following

it shall always take the form of a Gaussian filter that explicitly reads

Tμ(ωμ) =

√
N

(G)
μ exp

[
−
(ωμ − ωF

μ )
2

2σ2
μ

]
. (48)

Where ωF
μ is the centroid frequency and

√
N

(G)
μ a normalizing factor (derived

in XII) of the respective filter and σμ is related to the full width half maximum

(FWHM). Introducing M′ = diag( 1
σ2
s
, 1
σ2
i
) and writing the centroid frequencies of

the filters as ωF
T = (ωF

s , ωF
i ) allows to write β(F)(ωs, ωi) as
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β(F )(ωs, ωi) =

√
N

(G)
s N

(G)
i√

N
· (49)

exp

[
−1

2
(ω − ω0)

TM(ω − ω0)−
1

2
(ω − ωF )

TM′(ω − ωF ) + iωTτ

]
.

And reordering yields

β(F)(ωs, ωi) =

√
N

(G)
s N

(G)
i√

N
(50)

· exp
[
−1

2
ωT (M+M′)ω + ωT (Mω0 +M′ωF )

]

· exp
[
−1

2
ω0

TMω0 −
1

2
ωF

TM′ωF

]
· exp

[
iωTτ

]
.

Equation (50) has still a Gaussian form and contains many information on the

effect of filtering that we will briefly discuss in the following.

First, we note that considering the signal and idler modes only, they will in general

not be normalized to one after filtering.

Second, the effective centroid frequencies of β(F) do in general differ from that of

β, unless ωF = ω0.

Last, taking a close look at M+M′ reveals that narrow band filtering, i.e. 1
σ2
μ
� 1

σ2
k
,

effectively suppresses the off-diagonal elements of M in the sense that they become

very small w.r.t. the new diagonal elements. But recall the result of III A, claiming

that these off-diagonal elements are carrying the information about the spectral

correlations. Therefore it is now required to introduce a new quantitative measure

for the spectral correlations between signal and idler mode. Such a measure can

be introduced by means of the so called Schmidt modes. These are obtained by

performing a Schmidt decomposition on (50) that shall be briefly introduced in
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the following.

3. Schmidt or Singular Value Decomposition

1 2 3 4 5
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Figure 8: The Schmidt Modes of an exemplary spectral correlation function. Here
with ωF = ω0 and a FWHM for the filter that is half of the ellipsis minor axis. (a)
depicts the contribution of the first ten Schmidt modes before filtering and (b) after
filtering. Clearly, the filtering suppresses higher Schmidt modes and thus frequency
correlations. Nevertheless, even after filtering the remaining contribution of the
second mode is about 10%. Note that we have carried out a renormalization with
respect to the first mode in order to obtain a better comparison for the contribution
of the modes. Without this renormalization, an overall decrease in contribution
due to filtering would be observed.

To reveal the quantum correlations of the spectral correlation function β(F)(ωs, ωi)

a Schmidt or singular value decomposition (SVD) can be performed [7, 40, 41].

That is accomplished by finding the eigenbasis of β(F)(ωs, ωi) such that it can be

written as

β(F)(ωs, ωi) =
∑
k

√
λkψn(ωs)φk(ωi). (51)
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Where λk, ψk and φk are solutions of the integral eigenvalue equations

ˆ
dω′K1(ω, ω

′)ψk(ω
′) = λkψk(ω), (52)

ˆ
dω′K2(ω, ω

′)φk(ω
′) = λkφk(ω), (53)

with the kernels (one photon spectral correlations)

K1(ω, ω
′) =

ˆ
dωiβ

(F)(ω, ωi)β
(F)∗(ω′, ωi)

K2(ω, ω
′) =

ˆ
dωiβ

(F)(ωs, ω)β
(F)∗(ωs, ω) ,

here ψk and φk are the corresponding eigenfunctions. For (49) an analytic expres-

sion of (51) can be given by Hermite polynomials [22].

Carrying out the SVD numerically is of great interest, especially for more general

filter functions, and shall be introduced briefly.

The discretization of β(F)(ω, ω′) may be written as β
(F)
ω,ω′ and yields the following

matrix decomposition:

β
(F)
ω,ω′ =

∑
k

Uω.kDk,kVk,ω′ . (54)

Where U and V are unitary matrices and D is a diagonal matrix. And for a step

size of Δω we have the following relations

Uω,k/Δω ↔ φk(ω), (55)

Vk,ω′/Δω ↔ ψk(ω
′),

Dk,kΔω ↔
√
λk.

Fig. 8 depicts an exemplary Schmidt decomposition of an unfiltered and filtered

state. There exists many different measures to extract the amount of correlations

from the Schmidt modes [41, 42], but for now it shall be enough to bare in mind
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that we can find a quantitative measure harnessing Schmidt modes.

IV. QUANTUM INTERFERENCE IN LINEAR OPTICAL NETWORKS

Combining sections II and III provides everything required for a detailed descrip-

tion of a general quantum interference scheme in linear optical networks. The

next step is to apply the previously derived PDC state to a linear optical quantum

experiment, like the BosonSampling from section II B 1.

Main interest of this thesis is the tomography of the underlying linear optical

network which is the basic building block for many optical quantum experiments.

As we will see in the next section, two-photon interference is sufficient for that

purpose. Therefore we start by introducing the concept of two-photon correlation

measurements. To the best of our knowledge the first experiments addressing

this topic were carried out Hanbury Brown and Twist in 1956 [43] and Hong, Ou

and Mandel in 1987 [44]. A first complete formal analysis for general nth-order

correlation functions of a quantum optical field was given 1963 by Glauber [27].

A. Two-Photon Correlation Measurements

Two-photon interference is characterized by the second-order correlation function

G(2) that shall now be introduced. Following [27] a G(n)-measurement of the elec-

tromagnetic field expresses the correlations of the field at 2n different points of

space time and values of these functions are measured by n-fold delayed coinci-

dence detection of photons. Therefore a G(2)-measurement is a fourth-order in-

terference effect between two photons. Measuring a photon is associated with the

annihilation operator (3). Now, a transition of the field from the initial state |i〉 to

the final state |f〉 in which one photon had been absorbed at (z, t) in space time
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is associated with the matrix element

〈f |E(+)(z, t) |i〉 . (56)

And correspondingly for the absorption of two photons at (z, t) and (z′, t′) we have

the matrix element

〈f |E(+)(z′, t′)E(+)(z, t) |i〉 . (57)

For a frequency independent detector the probability of detection is given by the

sum (integral) over the modulo square of all these frequency states

∑
f

∣∣〈f |E(+)(z′, t′)E(+)(z, t) |i〉
∣∣2 =

=
∑
f

〈i|E(−)(z, t)E(−)(z′, t′) |f〉 〈f |E(+)(z′, t′)E(+)(z, t) |i〉 =

= 〈i|E(−)(z, t)E(−)(z′, t′)E(+)(z′, t′)E(+)(z, t) |i〉 . (58)

This result is independent of whether the |f〉 is discrete or continuous. In the

second case we need to take the integral over all final states though
∑→

´
.

1. An Example: The Hong-Ou-Mandel-Dip (HOM-Dip)

Let us give an instance for a two-photon correlation measurement by assuming a

beam splitter of transmissivity |T |2 and reflectivity |R|2. In the case of a perfectly

monochrome input into the two beam splitter modes, i.e. |in〉 = |1, 1〉 we are

back at the BosonSampling II B 1 and with (16), (13) we find that our initial state

undergoes the following transition

|1, 1〉 → (T 2 −R2) |1, 1〉 − TR∗ |2, 0〉+ T ∗R |0, 2〉 . (59)
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Note that this is consistent with the probabilities given by (21). Therefore, in case

of a 50 : 50 beam splitter the transformation yields 1√
2
(|0, 2〉 − |2, 0〉). However,

in practice the photons are never monochrome as we have discussed extensively in

III.

Assuming an input of (34) with temporal delay (44) the probability to detecting a

coincidence of detecting a photon in mode 1 and 2 after the beam splitter |out〉 =
â†1(ω)â

†
2(ω

′) |0〉 is given by (50). Again, with (13) this results in

P1,2 =

ˆ
dω

ˆ
dω′ ∣∣|T |2 f(ω, ω′)− |R|2 f(ω′, ω)

∣∣2 . (60)

We have omitted the explicit calculations to arrive at (60) and we have not carried

out the integrals. We have done so to prevent redundancy with the rest of this

section in which these calculations will be given explicitly for the more general

case of an arbitrary unitary. Though, it might be a nice instance for preview to

see how finding the G(2) function works and why the shape of the JSA matters for

that purpose. Therefore, let us now proceed with the more general case.

B. Two-Photon Correlation Measurement for a Passive Linear Optical Cir-

cuit

In this section a derivation of a general two-photon interference will be given. The

input shall be of the form as (47) with a JSA containing correlation and filtering

effects as in (49) and is feed into a general M ×M -unitary U. The interest lays

in measuring a two-fold coincidence of two output modes, i.e. the corresponding

G(2)-function.

Feeding one photon in mode t1 and one in t2 yields an input of the form

|in〉 = |ψ〉PDC =

ˆ ˆ
dωsdωi β

(F)(ωs, ωi) â
†
t1(ωs)â

†
t2(ωi) |0〉 , (61)

40



with

β(F)(ωs, ωi) =

√
N

(G)
s N

(G)
i√

N
(62)

exp

[
−1

2
(ω − ω0)

TM(ω − ω0)−
1

2
(ω − ωF )

TM′(ω − ωF ) + iωTτ

]
.

In the sense of (16) the linear optical circuit is imposing the following transition

to the input |in〉

Û |in〉 =

ˆ ˆ
dωsdωi β

(F)(ωs, ωi) (63)[
u1,t1 â

†
1(ωs) + · · ·+ uM,t1 â

†
M(ωs)

] [
u1,t2 â

†
1(ωi) + · · ·+ uM,t2 â

†
M(ωi)

]
|0〉 .

And - as in the example of the HOM-Dip - the output shall be a coincidence in

two modes, say s1 and s2

|out〉 = â†s1(ω)â
†
s2
(ω′) |0〉 . (64)

And thus the matrix element are

〈out| Û |in〉 =

ˆ ˆ
dωsdωi β

(F)(ωs, ωi) (65)

〈0| âs2(ω′)âs1(ω)
[
u1,t1 â

†
1(ωs) + · · ·+ uM,t1 â

†
M(ωs)

]
[
u1,t2 â

†
1(ωi) + · · ·+ uM,t2 â

†
M(ωi)

]
|0〉 .

To carry out (65) we need to recall the commutator relations (7) and extend them

for the case of additional discrete spatial modes, say i and j

[âi(ω), â
†
j(ω

′)] = δ(ω − ω′)δi,j. (66)

We can exploit (66) to rewrite the four-operator terms âi(ωi)âj(ωj)â
†
k(ωk)â

†
l (ωl)
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appearing in (65). This is done by reordering the appearing two-operator terms

âj(ωj)â
†
k(ωk) = δ(ωj − ωk)δj,k + â†k(ωk)âj(ωj) successively and using âi(ωi) |0〉 = 0.

This leaves us with

âi(ωi)âj(ωj)â
†
k(ωk)â

†
l (ωl) = δi,jδj,kδ(ωj −ωk)δ(ωi−ωl)+ δi,kδj,lδ(ωi−ωk)δ(ωj −ωl).

(67)

Using this result, (65) becomes

〈out| Û |in〉 =

⎡
⎣us2,t2us1,t1︸ ︷︷ ︸

:=be

β(F)(ω, ω′) + us2,t1us1,t2︸ ︷︷ ︸
:=bo

β(F)(ω′, ω)

⎤
⎦ . (68)

The resulting G(2)-function (58) reads

G(2) =

ˆ ˆ
dωdω′

∣∣∣〈out| Û |in〉
∣∣∣2 (69)

=

ˆ ˆ
dωdω′

[
|be|2

∣∣∣β(F)(ω, ω′)
∣∣∣2 + |bo|2

∣∣∣β(F)(ω′, ω)
∣∣∣2

+
(
b∗ebo

(
β(F)

)∗
(ω, ω′)β(F)(ω′, ω) + c.c.

)]
=
(
|be|2 + |bo|2

) ˆ ˆ
dωdω′

∣∣∣β(F)(ω, ω′)
∣∣∣2

+

(
b∗ebo

ˆ ˆ
dωdω′β(F)∗(ω, ω′)β(F)(ω′, ω) + c.c.

)
.

In (69) we get two cases for the integrand which we can write down explicitly by

(50). Let us rename ω → ωs and ω′ → ωi to allow ourselves to keep the notation

of III A 2. Then the first case gives the explicit integrand

∣∣∣β(F)(ωs, ωi)
∣∣∣2 =

N
(G)
s N

(G)
i

N
exp

[
−1

2
ωT2 · (M+M′)ω + ωT2 · (Mω0 +M′ωF )

]
·

= exp
[
−ω0

TMω0 − ωF
TM′ωF

]
. (70)
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And the second integrand reads

β(F)∗(ωs, ωi)β
(F)(ωi, ωs) = (71)

=
N

(G)
s N

(G)
i

N
· exp

[
−ω0

TMω0 − ωF
TM′ωF

]
· exp

[
−1

2
ωT (M+M′)ω + ωT (Mω0 +M′ωF )− iωTτ

]

· exp
[
−1

2
(σxω)T (M+M′)σxω + (σxω)T (Mω0 +M′ωF ) + i(σxω)Tτ

]
.

In (71) we have introduced the Pauli matrix σx =
(
0 1
1 0

)
to perform the switch of

arguments. Lets define the following quantities for a clearer notation:

A0 ≡ 2(M+M′), (72)

A ≡ 1

2
A0 +

1

2
σxA0σx, (73)

F0 ≡ 2 (Mω0 +M′ωF ) (74)

F ≡ 1

2
F0 +

1

2
σxF0, (75)

Δτ ≡ σxτ − τ = (τi − τs) ·
(

1

−1

)
, (76)

C ≡ exp
[
−ω0

TMω0 − ωF
TM′ωF

]
. (77)

Thus we obtain

∣∣∣β(F)(ωs, ωi)
∣∣∣2 = N

(G)
s N

(G)
i

N
· C · exp

[
−1

2
ωTA0ω + ωTF0

]
(78)

and

β(F)∗(ωs, ωi)β
(F)(ωi, ωs) =

N
(G)
s N

(G)
i

N
· C · exp

[
−1

2
ωTAω + ωTF+ iωTΔτ

]
.

(79)

The normalization constants appearing in N
(G)
s N

(G)
i

N
is given in XII.
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We can now carry out the integrals in (69). Both (78) and (79) are two instances

of the following kind of N dimensional integral

ˆ
dv exp

[
−1

2
vTXv + jTv

]
=

√
(2π)N

detX
· exp

[
1

2
jTX−1j

]
. (80)

For X being symmetric (and j being a general N dimensional vector), which is here

the case, this can be derived by substituting v → v +X−1j and then by analogy

with (144) in XII. Thus (69) can be calculated explicitly and with (72)-(77) we

obtain

G(2) =
N

(G)
s N

(G)
i

N
· C ·

{(
|be|2 + |bo|2

) 2π√
detA0

e
1
2
F0

TA0
−1F0+ (81)

(b∗ebo + c.c.)
2π√
detA

e
1
2
FTA−1F · exp

[
−1

2
Δτ TA−1Δτ

]}

Factoring out all the constants, combining them in K =
N

(G)
s N

(G)
i

N
C 2π√

detA0
e

1
2
F0

TA0
−1F0 and renaming G(2) ≡ Pc(Δτ) yields

Pc(Δτ) = K · (|be|2 + |bo|2 + (82)

+2Re (b∗ebo)

√
detA0

detA
e

1
2
FTA−1F− 1

2
F0

TA0
−1F0︸ ︷︷ ︸

≡Λ

· exp
[
−1

2
Δτ TA−1Δτ

]
).

It will be vital to include all the discussed influences (frequency mismatch, cor-

relations and filtering) in the network tomography since the extraction of the

visibilities is such that we are fitting a theoretical model (the above) to our set of

data. To improve the procedure we need to have a theoretical description that is

as complete as possible.

As we shall see in the next section an ubiquitous measure for distinguishability in

quantum optics experiments - and in particular for the network tomography - is

the so called visibility.
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The visibility is defined [38] as the fractional reduction of the probability of coin-

cidence from its temporal uncorrelated case, i.e.

V = 1− Pc(Δτ = 0)

Pc(Δτ → ∞)
. (83)

Which, for (82), reads

Vout, in = − b∗ebo + beb
∗
o

|be|2 + |bo|2
Λ. (84)

V{s1,s2},{t1,t2} = −Λ
u∗
s2,t2

u∗
s1,t1

us2,t1us1,t2 + us2,t2us1,t1u
∗
s2,t1

u∗
s1,t2

|us2,t2us1,t1 |2 + |us2,t1us1,t2 |2

If we had perfectly indistinguishable photons, the visibility V0 would only depend

on the elements of the network U

V0 = −
u∗
s2,t2

u∗
s1,t1

us2,t1us1,t2 + us2,t2us1,t1u
∗
s2,t1

u∗
s1,t2

|us2,t2us1,t1 |2 + |us2,t1us1,t2 |2
. (85)

Which deviates by the factor Λ.

1. Extraction of Visibilities from Experimental Data

The procedure to extract visibilities from experimental data shall now be briefly

introduced. The given experimental data is a collection of sample points of the

coincident count rate that corresponds to (82) for different time-delays Δτ . How-

ever, as individual delays are set by translating a fiber coupler with a motorized

screw there can be a small drift in coupling efficiency over the whole delay-range.

Without this drift, the background of the visibility would be a horizontal straight

line. For drifts smaller than 5% of the two-photon flux the drift is in good approxi-

mation linear and can be modeled with an additional parameter, T [15]. Therefore
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our fit model reads

Nc(t) = (1 + T · t)
(
O +A · 2 · Λ · exp

[
−1

2

[
(1,−1)A−1(1,−1)T

]
· (t− tc)

2

])
.

(86)

HereT, O, A and tc are parameters to be fitted. The adjusted visibilities (85) can

be extracted from the fitting-parameters via

Ṽ = 1− O +A
O = −A

O . (87)

V. TOMOGRAPHY OF PASSIVE LINEAR OPTICAL NETWORKS

This section shall cover a brief introduction to the three different approaches to

tomography of passive linear optical networks as well as brief systematic discussions

of the respective method. Thereafter we propose some new methods in order to

benchmark these approaches. At last we propose a novel approach to network

tomography.

A. Vienna

This approach is based on minimizing a certain matrix function D(U), where U

describes the underlying linear optical circuit. And min
U

D(U) corresponds to the

best possible guess for U, given a certain set of reference data. The reference data

shall just be the set of visibilities extracted from experimental measurements by

the method derived in IV B 1, i.e. Ṽ in (87). Therefore we define

D(U) :=
N∑
i=1

∣∣∣Ṽi − Vi(U)
∣∣∣2

σ2
i Γ

. (88)

The explicit form of Vi(U) is given in (85), σi is the standard deviation derived

from the extraction of Ṽi. Γ is a constant taking care of the right normalization
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w.r.t the degrees of freedom [26] and N is the set of all possible visibilities and

therefore N =
(
M
2

)2
. At this point we might already discuss some properties that

follow from the definition of D(U).

1. Note that 2 ·
(
M
2

)
parameters are sufficient to describe any unitary (however,

it can be more or fewer as we have mentioned in II B 2). As a consequence we

are optimizing an over-complete set of equations. This is done in the hope

that the noise – that is in general imposed on Ṽi – is not biased towards

any direction. If that is true, the set of visibilities Ṽ scatters randomly

around the expectation value and hence, calculating the expectation value,

they average out in the limit N → ∞. Of course N is limited by N =
(
M
2

)2
but that should still be better than using for instance 2 ·

(
M
2

)
visibilities and

provide some robustness against errors. However, this applies only if every

physical effect is taken into account. If it was not, the data Ṽ could be biased

(see for instance IX C). Therefore it is crucial to consider a description of the

physical effects that is as detailed as possible to perform the extraction of

the primary data Ṽ . Which can be considered a weak point of this method.

2. Let us anticipate another drawback at this point. The main problem of this

approach is to minimize D(U) which can in general only be done numerically.

And, as we will see, the numerical success (cost) depends on the initial

points from which we start the optimization. I.e. we have the additional

requirement that we need a well educated guess for where the parameters

(the unitary) are located. And furthermore the minimization might lead

to an overhead in computational cost. However, only using a minimization

approach, some information on the quality of the reconstruction is gained.

3. Another important and in contrast very convenient property is that visibility

measurements are independent of loss in the in- and output modes [24].

4. Again anticipating what will be discussed in more detail in the following
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we would like to mention another advantage. If one knows the underlying

structure of the network, one can apply unitary constraints throughout the

optimization process by expressing U as a function of the physical building

blocks, described by the set of beam splitting and phase shifting parameters

p, i.e. U(p). By choosing to implement the unitary constraints in such

a way, we implicitly impose additional conditions that are restricting the

predicted set of visibilities and therefore U(p) to possess the right structure.

In fact this property is a very strong argument for choosing an algorithm that

is intrinsically taking into account the unitary constraints in such a natural

manner as it does not allow to deviate to much from the actual structure,

as it automatically restricts the transformation to the unitary manifold on

which it has to be located.
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Figure 9: Two dimensional exemplary depiction of the difference between (a) an
approach that forces the unitary property by applying a polar decomposition and
(b) an approach that samples from an over-complete set and applies unitary con-
straints in the natural manner (i.e. it optimizes ϕ, given the structure eiϕ) as in
’Vienna’. The red dot is the actual value that describes the unitary transforma-
tion U and the crosses correspond to measurements. (a) applies for the passive
approaches ’Bristol’ and ’Brisbane’. Note that here just one measurement is real-
ized and enters the reconstruction, different from (b) where several measurements,
originating from just one measurement run, enter into the reconstruction.

For solving the minimization problem (88) we have employed an interior-point

method (IPM) [45–47] to solve min
p

D (U(p)).2 However, the convergence of IPM

does depend on the initial values p0 and only recovers local minima in general [48].

Therefore the success of the minimization crucially depends on the educated guess

for the initial values.3 But if we guess a p0 that is close enough to the true value of

pmin we will converge into the global minimum. The remaining question is: “How

2 Implemented via the nonlinear optimization toolbox in matlab.
3 We have also practically investigated the possibility of utilizing pattern-search algorithms that

are often doing better in finding global minima and are less depending on the starting point.
These algorithm do not depend on gradients and are utilized for highly nonlinear or ill-defined
problems and are usually doing better in finding global minima [49]. However, we gave up
following this approach as the convergence took much longer and the results were much worse.

49



close is close enough?”. To guarantee convergence towards the right minimum we

have implemented the following numerical trick: We start with some parameter

configuration p0 of that we know that it is within a range of ε away from the true

value pmin that minimizes (88). I.e. we can trust the initial guess within the same

region p0± ε. In the next step we choose r random initial points pr ∈ p0± ε from

that region and run the optimization. Eventually, we pick the resulting pmin that

minimizes (88) over the r optimization runs.

B. Bristol

For this approach single photon transition amplitudes τ and visibilities are utilized

in order to infer the network. The aim is to find an approach to linear optical

network tomography that is independent of constant loss in the in- and output

modes. Let us briefly introducethe procedure, described in detail in [24].

Consider the 2× 2 device, depicted in Fig. 10: The respective visibility for a coin-

cidence measurement at output modes j and g, if one inputs two indistinguishable

photons into modes k and h, is given as

Vg,h,j,k = −2 cos(αj,k − αj,h − αg,k + αg,h)
τj,kτj,hτg,kτg,h

τ 2j,kτ
2
g,h + τ 2g,kτ

2
j,h,

. (89)

This follows immediately from (85) by rewriting uμ,ν = τμ,ν · eiαμ,ν . The visibility

(89) is independent of loss in in- and output modes because the loss factors cancel

out as they appear in the same manner in the nominator and denominator [24].

One now defines another loss insensitive quantity xg,h,j,k that reads

xg,h,j,k =
τj,kτg,h
τj,hτg,k

. (90)
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Figure 10: Underlying 2× 2-building blocks. (a) For one-photon transition ampli-
tudes that are obtained from a one-photon state that is fed into one mode while
the other(s) are in the vacuum mode. (b) Visibilities are obtained from two-photon
probing state and are phase sensitive. They allow the reconstruction of the phases.
Taken from [24].

And for practical purposes

yg,h,j,k := xg,h,j,k + x−1
g,h,j,k. (91)

Note that xg,h,j,k and Vg,h,j,k are both fully determined by experimental measure-

ments of the one photon transition amplitudes (⇒ xg,h,j,k) and the HOM-Dip

(⇒ Vg,h,j,k).
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The matrix of a m×m network that is to be recovered can be parameterized as

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

τ1,1 τ1,2 · · · τ1,m

τ2,1 τ2,2e
iα2,2 · · · τ2,me

iα2,m

...
... . . . ...

τm,1 τm,2e
iαm,2 · · · τm,me

iαm,m

⎞
⎟⎟⎟⎟⎟⎟⎠ . (92)

In this real bordered representation it has already been encapsulated that the

global input and output phases can be regarded as trivial as they can not be

determined (see (17)). Therefore the phase angles in the first row and first column

can be regarded as vanishing elements

αμ,1 = α1,μ = 0. (93)

Another condition that applies to quantum mechanical measurements is that the

measured photon statistic is invariant under the complex conjugation transforma-

tion M → M∗. Therefore the sign of one of the remaining angles in (92) can be

regarded as arbitrary. We choose

sign(α2,2) = +1. (94)

With these last two assumptions it is possible to recover all remaining phases in

(92) by means of (89). Rewriting (89) with (91) results in

cos(αj,k − αj,h − αg,k + αg,h) = −Vg,h,j,kyg,h,j,k
2

. (95)

Applying the cos−1 and defining �x� := cos−1(cos(x)) yields

βg,h,j,k := �αj,k − αj,h − αg,k + αg,h� = cos−1

(
−Vg,h,j,kyg,h,j,k

2

)
. (96)
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Note that �x� is not just the absolute value of x. It does also restrict 0 ≤ �x� < π

and hence we loose the information on the sign of the argument. However, if

the absolute value of the desired phase angle, say αg,h, as well as the other three

reference angles is known, the sign can be recovered:

sign(αg,h) = sign (�βg,h,j,k − �αj,k − αj,h − αg,k − �αg,h���−

�βg,h,j,k − �αj,k − αj,h − αg,k + �αg,h���) . (97)

Now we can recover all phases in (92) from (96) in two steps. First we find �αg,h�
by setting j = k = 1 in (96). Thereafter we recover the signs of the phase angles

in the second column by fixing αj,k = α2,1 while αg,h = α3...m,2. And for the second

row by fixing αj,k = α1,2 and αg,h = α2,3...m. The remaining angles are found

by fixing αj,k = α2,2. Hence, with the introduced method it is possible to infer

the remaining angles from the conditions (93) and (94) we are able to recover the

angles from loss insensitive measurement data

α̃g,h = sign(αg,h)βg,h,j,k. (98)

However, the matrix to be recovered does still contain loss sensitive single photon

transition amplitudes τμ,ν . We can circumvent this by applying the unitary con-

straints to M1. Note that this is usually not the case as the system undergoes

interactions with the environment. In that case one needs to force unitarity. This

is usually done by applying the polar decomposition as it gives a best estimate of

the true unitary [50].
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Assuming the unitary property, we first rewrite M1as

M2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

τ1,1 τ1,2 · · · τ1,m

τ2,1 x̃2,2,1,1e
iα̃2,2 · · · x̃2,m,1,1e

iα̃2,m

...
... . . . ...

τm,1 x̃m,2,1,1e
iα̃m,2 · · · x̃m,m,1,1e

iα̃m,m

⎞
⎟⎟⎟⎟⎟⎟⎠ , (99)

where x̃g,h,j,k = xg,h,j,k
τj,hτg,k
τj,k

. When M can be assumed to be unitary we can

apply the unitary conditions to the rows and columns of M (e.g. M∗
μ,νMμ,κ = δν,κ

in Einstein notation). This results in systems of equations for which the coefficient

matrix is given as

Ms =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1

1 x2,2,1,1e
iα̃2,2 · · · x2,m,1,1e

iα̃2,m

...
... . . . ...

1 xm,2,1,1e
iα̃m,2 · · · xm,m,1,1e

iα̃m,m

⎞
⎟⎟⎟⎟⎟⎟⎠ . (100)

To recover M2 we need to solve the following systems of equations to obtain τ1,μ

and τμ,1:

M†
s

⎛
⎜⎜⎜⎜⎜⎜⎝

τ 21,1

τ 22,1
...

τ 2m,1

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠ and Ms

⎛
⎜⎜⎜⎜⎜⎜⎝

τ 21,1

τ 21,2
...

τ 21,m

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠ . (101)

Note that Ms only contains quantities that are loss insensitive and purely de-

termined by experimental measurements. As a consequence the single photon

transition amplitudes obtained from solving (101) are also loss insensitive. And

with the labeling introduced above (99) we can recover the underlying network

from the loss insensitive xg,h,j,k, αg,h and the single photon transition amplitudes

obtained via (101). Some remarks: In order to apply the procedure, the first
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row and column should not contain any vanishing elements. If they do, one only

needs to relabel in- and/or output modes accordingly to move the vanishing ele-

ments into another column or row. Another assumption is constant loss in in- and

output modes which might not apply in reality.

Now that the method has been introduced, let us discuss some systematical pros

and cons:

1. The advantage of this method is that it is loss insensitive (for the assumed

kind of constant loss).

2. Another advantage is that it is computationally very cheap and feasible for

large networks. One only needs to perform a polar decomposition and a

matrix inversion which can be done for any practical size of the underlying

network as they both scale like O(n3) in the worst case [51].

3. However, a major drawback is that this approach is completely passive: It

contains no feedback like the approach from the previous section did. It is

very strongly conditioned by the measurement data and the reliability of

these. If they contain slight errors they propagate through the whole recon-

struction process. Consider also Fig. 9 to see this. One measures a certain

set of experimental data V and τ which reliability depends on the exper-

imental properties of the observable measured. (For instance: Collecting

a set of one photon transmission amplitudes always carries errors, such as

higher order noise etc.) Then the taken experimental values enter without

any additional modification. In the worst case scenario one could not even

tell if it was completely off, whereas in the previous method in such a case

D(U) would attain an untypically high value.

4. Additionally, another step must be performed in order to obtain the missing

one photon transition amplitudes. Namely the inversion of (101). This can

lead to further amplification of the imposed errors.
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We will investigate the last two points in quantitative detail in section X B.

C. Brisbane

(a)

(b)

Figure 11: Schematic sketch of the steps (probing states and measurements) neces-
sary. (11a) To obtain the amplitudes. And (11b) to obtain the phases. Readopted
from [25].

In this section we introduce the last approach that shall be investigated. Further

details might be found in [25]. This approach deploys coherent probe states to

characterize the linear optical network. As previously the implemented network
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shall be described by the matrix M that only is unitary in the ideal case of no

loss. As in (16) the in- and output relations are characterized by this matrix via

â†t → ∑M
k=1 Mkt â

†
k. And therefore the input-output relations for any multimode

coherent state reads

βt =
M∑
k

Mktαk. (102)

Where the multimode coherent input state is noted as |α1, α2, . . . , αM〉 and the

output as |β1, β2, . . . , βM〉. Inferring M from intensity measurements can be ac-

complished by executing the following steps to obtain the amplitudes and phases

of Mjk = rjke
iθjk :

1. Amplitudes

1. Feed coherent state with intensity I into mode j

2. Measure all the intensities Ik at output mode k simultaneously to obtain the

amplitudes

rjk =

√
Ik
I
, k = 1, 2, . . . ,M. (103)

3. Do this for j = 1, 2, . . . ,M

2. Phases

1. Send a coherent state |α〉 to a 50 : 50 BS and control the phase φ between

them. Then send |α1〉 to input 1 and |α2〉 =
∣∣α1e

iφ
〉

to input mode j.

2. The intensity at output mode k is given as

Ik = I
∣∣M1k +Mjke

iφ
∣∣2 =

⎧⎪⎨
⎪⎩
I
(
r211 + r2j1 + 2r11rj1 cosφ

)
k = 1

I
(
r21k + r2jk + 2r1krjk cos(φ+ θjk)

)
k �= 1

.

(104)
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3. Choose φ = 0 for I1 at its maximum and subsequently sweep φ until Ik

attains its maximum: At this point we have

θjk = 2π − φ. (105)

4. Repeat this for j = 2, 3, . . . ,M and thereby obtain all non-trivial phases θjk.

In order to obtain the unitary that approximates best the underlying network the

polar decomposition is applied.

In the same manner as before we shall now discuss some systematic properties of

this method:

1. An experimental advantage is that this method deploys coherent states for

probing. These are in good approximation given by standard laser sources.

They are known to be much brighter and thus provide a very good signal

to noise ratio than current single photon source. Therefore we expect the

imposed errors to be smaller. However, considering XII the errors should

neither be underestimated.

2. The experimental and computational effort is well under control. The only

post-processing step required is that of performing a polar decomposition.

Consult X B for an explicit discussion. Another consequence is that no fur-

ther amplifications of the imposed errors are caused (consider e.g. the previ-

ous method where this was the case because additional analytical treatment

was required in order to obtain the network).

3. The drawback that we would like to highlight is the same as point 3 of the

previous method: The scheme is entirely passive and contains no additional

feedback (see Fig. 9).

We will now introduce some methods to analyze the three previously introduced

methods.
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VI. WITNESS OF QUALITY

Let us define the following witness as a quality measure for how good the method

works. One instance would be to compare the trace distance of the reconstructed

matrix Ũ and the actual matrix U, i.e. T (Ũ,U) := 1
2

∥∥∥Ũ−U
∥∥∥
1
. However, in

practice we do usually not know the actual matrix U (even in the best case we

only know a close approximation of it) which is precisely why we were interested in

network tomography in the first place. In other words: Ũ is somehow a function

of a set of primary data, i.e. Ũ(f(U)).4 As discussed in the previous section and

as we will see in section X B, performing the actual tomography can, in general,

lead to additional errors. Consequently it seems more reasonable to consult f(U),

i.e. comparing f(U) and f
(
Ũ(f(U))

)
in some measure (Let f for instance be an

unspecified function that maps U(n) → R
m). We choose the finite set (vector) of

visibilities V as such a function. The procedure is depicted in Fig 12.

We do so because it is because it is a function that is carrying information about

the quantum inference and we are concerned about the quantum properties and

quantum applications of the network.

Therefore, we propose the self-consistency measure as witness of the quality for

the network tomography that had been applied to obtain U′

Q :=
∥∥∥Ṽ(U)− V(Ũ)

∥∥∥
1
. (106)

At first this definition seems a bit redundant and it is in fact only as reliable as the

experimentally extracted visibilities Ṽ(U) themselves are.5 We are writing Ṽ(U)

to indicate that the extracted visibilities Ṽ(U) are always an approximation. Its

4 However, this scenario is not including numerical experiments, such as the one in section VIII,
because in such a case we explicitly generate the underlying actual unitary U.

5 This is why one must have a description of the experiment that is as complete as possible
which was object to the first part of this work
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reliability depends on the respective model (consider (87)), whereas this is not the

case for V(Ũ) since it can be obtained directly from the reconstructed unitary

Ũ via (85). In other words: Q is a proper measure to assess the quality of the

reconstruction if we can extract a high quality of reconstruction if we can extract

a highly reliable set of primary data. But, this might be a problem that is much

better under control. And note that if the extraction is free of errors Q is a proper

measure.

Primary Data

& Apply

Compute

Choose
Method

∈ {Vg,h,j,k, τi,j, rij, θij}

U

Ṽ(U)

Compare

Measure/
Extract

Ũ

V(Ũ)

Q =
∥∥∥V(Ũ)− Ṽ(U)

∥∥∥

Figure 12: Flowchart representation for the self-consistency witness: After measur-
ing the primary data for the respective method, e.g. Vg,h,j,k and τi,j for ’Bristol’,
this data is utilized for the network tomography that yields Ũ. Having Ũ the
hereby determined set of visibilities V(Ũ) can be computed. The self-consistency
check is obtained by calculating Q and may serve as a witness for the quality of
the reconstruction.
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VII. (BACK)PROPAGATION OF ERRORS

The usual (forward) error propagation addresses the following scenario: Assume

that we are interested in the properties of a system that can be described by the

functional dependence F (x), where x is the vector of parameters on which the

systems properties depend. Now in the case of forward propagation one would

ask for the perturbation of the system ΔF , given a certain perturbation of the

parameter vector Δx. To carry out an analytical error propagation of this kind,

a necessary requirement is, that the functional dependance F (x) is known. This

is in principle the case for ’Bristol’ and ’Brisbane’ and we will carry out the re-

spective error propagation in X B. This will give us a bound on ΔU, assuming

some perturbation of the primary data. Therefore ΔU provides a statement on

the robustness and thus quality of the respective network tomography method.

However, this is not possible for ’Vienna’ because no closed analytical dependence

can be given (at least no feasible). For this reason we need to follow another

approach that we shall propose in the following subsection.

3. Backpropagation of Errors

Let us start with stating the problem we are facing. Our aim is to solve the

following optimization problem

min
p

D(p), where D(p) :=
N∑
i=1

|Ei −Ai(U(p))|2
σ2
i Γ

, (107)

where Ei are the visibilities, determined by measurement and Ai is a analytical

express for the ith visibility that depends on p. Usually, no solution exists for (107).

However, we obtain an approximate solution p′ as described in V A. In analogy

with the forward propagation the following question arises: Given a perturbation

ΔEi what is the according perturbation of p, namely Δp. Note that finding a
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bound for Δp and thus for ΔU numerically is not sufficient in this case and one

should consider an additional quality measure, such as the one introduced in VI.

This is because we can not determine with certainty whether the perturbation

are purely caused by ΔEi or maybe just by some numeric circumstances of the

optimization routine, such as a bad choice of the algorithm, starting point, etc.6 We

are aware, that for similar problems one might make use of the inverse information

matrix of D(p), however these methods have failed and provided unphysical values

in practice. One reason is the shape of the Hessian that is unsuitable for numerical

inversion and the numerical approximations of the information matrix is equally

bad. Furthermore the information matrix does only provide a lower bound and we

are rather interested in an upper bound [52].

We propose a different approach that is based on imposing the theoretical error-

distribution to the primary data Ṽ(U) and performing the minimization in a

Monte-Carlo like manner by drawing Ei from this distribution. The details are

given in pseudocode in Alg. 1.

Some remarks:

• The optimization algorithm has not been specified in Algorithm1, for a dis-

cussion we refer to V A.

• The explicit form for A(p) can be obtained by (85) under the requirement

that the underlying structure of the network is known (e.g. sectionXVII

for the BosonSampling setup from Fig. 22). As we will show in the next

section, obtaining A(p) can always be accomplished for any passive linear

optical network that is known to behave unitary if its dimensionality, i.e.

the number of modes M , is known. E are the experimentally measured

visibilities and σ are their standard deviations.

6 Analyzing the optimization routine for such a case is a very broad problem and investigating
it in the framework of this work is unrewarding.
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Algorithm 1 Backpropagation
Require: p0, εl, εu, NS, NR

1: procedure Sampling(V ,σ)
2: for i ← 1, NS do
3: δV ← N (0,σ)
4: V ← V + δV
5: if V > 1 then V ← 1
6: if V < −1 then V ← −1
7: for j ← 1, NR do
8: � draw p0 ∈ [p0 − εl,p0 + εu] from the uniform distribution
9: p0, temp = p0 + random(−εl, εu)

10: [ptemp, Dtemp] ← min
ptemp

D(ptemp,V ,σ,p0temp)

11: subject to p0 − εl ≤ ptemp ≤ p0 + εu
12: if j == 1 then
13: D[i] ← Dtemp
14: p[i] ← ptemp
15: else if j > 1 then
16: if Dtemp < D[i] then
17: p[i] ← ptemp
18: else if Dtemp == D[i] then
19: pE[i, j] ← ptemp

20:
Require: Γ,A(p)
21: procedure D(p,V ,σ,p0)
22: D ← 0
23: E ← V
24: D ←∑Length(V)

i=1
|E[i]−A(p)[i]|2

σ[i]2Γ

• Line 19 in Algorithm1 encapsulates both, that the photon statistic is in-

variant under the complex conjugation of the underlying network U → U∗

(therefore the phase parameters pϕ and −pϕ are equivalent) and the fact

that two different results might yield the same value for D. (Whether or not

the first point has to be taken into account depends on the boundaries εl, εu

that have been impose.)

• The second loop is the random initialization that prevents the algorithm

from converging into the wrong local minimum, as discussed in V A.
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VIII. PROPOSAL: EXTENSION AND IMPROVEMENT

From the systematic discussions in V A, V B and V C two questions are arising:

How to add a feedback technique and thus improve the passive schemes ’Bristol’

and ’Brisbane’? And how to extend the active scheme ’Vienna’ to black box

devices?

As a matter of fact, we can achieve both aims with the same action and the

improvement of ’Bristol’ and ’Brisbane’ as well as the extension of ’Vienna’ can be

accomplished by merging the passive schemes with an additional post-processing

technique that is implementing active feedback in the manner of ’Vienna’.

First we propose the novel approach and thereafter an numerical experiment that

might be utilized to provide numerical evidence of the benefit of the novel method

and for which we shall present results in section X E.

As mentioned for all of the three methods we are concerned about contain major

systematic drawbacks: ’Bristol’ and ’Brisbane’ are entirely passive and the unitary

constraints are enforced by applying the polar decomposition. While ’Vienna’ is

implementing the unitary constraints in a natural manner throughout the recon-

struction and it is an active scheme, it is only applicable to very certain problems

for which an a priori knowledge of the physical network structure and an educated

guess for the characterizing parameters p0 is present. I.e. the drawback of either

of these two different groups of tomography schemes is the advantage of the other

and in fact our novel approach can be seen as a fusion of the active and passive

group of tomography schemes.

Now the novel approach shall be introduced:

Consider the completely unknown black box network U. We have seen that it is

possible to obtain a unitary approximation, say Ũ, by performing either of the

two passive schemes ’Brisbane’ or ’Bristol’.

By virtue of the unitary property, we can always find a natural mapping to the
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set of parameters

p = {ω1, ω2, . . . , ωn, ϕ1, ϕ2, . . . , ϕn}, (108)

where n =
(
M
2

)
. These are the n-dimensional (unitary) spherical coordinates

and are equivalent to the beam splitting ratios and phase shifting ratios from (22).

Therefore, we have just obtained one representation of the actual physical network

encoded in p. Which is one of the requirements for ’Vienna’.

Given Ũ, we can compute the respective set of spherical coordinates p̃ =

{ω̃1, ω̃2, . . . , ω̃n, ϕ̃1, ϕ̃2, . . . , ϕ̃n} by the algorithm proposed by Reck et al. (see II B 2

and note, that actually less than n phase shifting ratios are necessary as we do

not have to compute the full set p̃ϕ = {ϕ̃1, ϕ̃2, . . . , ϕ̃n} because the global phases

do, as previously, not contribute and do consequently not need to be computed.)

But by applying Reck et al.’s algorithm to the reconstructed unitary Ũ we have

just obtained the necessary educated guess for the initial values p0, encoded in p̃,

that is the last necessary requirement in order to apply ’Vienna’.

Although the actual physical structure might be unknown, we do possess one

and we claim this to be sufficient for our purposes. We claim so because the

advantage lays in the fact that we are now able to apply the unitary constraints

in a natural way and obtain an active feedback technique (Fig. 9) by applying

’Vienna’. However, bare in mind that we also require the measured over-complete

set of visibilities for this purpose. Depending on which method had been chosen

to obtain Ũ an extra set of measurement data might be required.7

Let us summarize: Applying ’Bristol’ or ’Brisbane’ provides us with a structure

and therefore an initial value that is necessary to apply ’Vienna’. By doing so, we

have just eliminated the drawbacks in both schemes.

Fig. 13 depicts the novel approach in a flowchart. Furthermore it presents a

7 This is definitely the case for ’Brisbane’ where no visibilities are collected. For ’Bristol’ this
requires to measure the set of all possible visibilities and not just a subset that is in general
sufficient for the scheme.
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scheme to numerically quantify the approach.

• Ignoring the dashed lines yields the experimental situation (red boxed) in

which the corresponding primary set of data Ṽ , τ̃ , θ̃ is determined by

experimental measurements. The subsequent steps are described above.

• Considering the whole chart yields a procedure for a numerical experiment

that can be employed to examine the improvement obtained by the novel

approach: One can draw a random unitary H from the Haar measure (for

it to be the unique measure invariant under the action of the unitary group

[11]) and compute the exact set of V , τ , θ analytically. Subsequently, one

emulates the experimental situation by perturbing this set of data. Now

one performs the new kind of network tomography, introduced above (inner

dashed gray box). This is done repeatedly for different sets of Ṽ , τ̃ , θ̃,

drawn at random from the respective distributions (e.g. Ṽ = V + δV and

τ̃ = τ (1 + δτ ) with δ(V , τ ) ∼ N (0,σ(V,τ ))). To ensure that the results are

not just representing a special case, further sampling must be implemented

by generating a representative set unitaries at random from the Haar measure

and repeating the previous steps (outer dashed gray box).8 At last the primal

unitary H is compared to the unitaries reconstructed utilizing the different

passive approaches Ũμ and the respective novel/extended approaches U′
μ.9

Some numeric results are presented in section X E.

8 One could again implement additional random sampling for the initial values p0. However,
this has not been done because we want to study the pure improvement accomplished by the
new method.

9 Here one can again make use of different measures to compare the results (as discussed in
section VI).
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Ṽ , τ̃ , θ̃

Ũμ
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Figure 13: Flowchart representation for the proposed novel approach to network
tomography (red) and a numerical approach to confirm the improvement (consider
the whole chart).



Results
This chapter shall be devoted to results and will be structured into three main

parts. In the first part we investigate the influence of correlations for the data

extraction, necessary for the network tomography (see V) and present the extracted

data.

Thereafter, in the second part, we present results regarding the network tomogra-

phy. In particular, results for the proposed back-propagation approach for a given

network that had been utilized for a BosonSampling experiment [15]. In the last

part we present results for the proposed novel approach to network tomography.

IX. IMPROVING THE DESCRIPTION OF GENERALIZED TWO-

PHOTON QUANTUM INTERFERENCE IN LINEAR OPTICAL WAVEG-

UIDE CIRCUITS

This section investigates the influence of correlations, namely, different interesting

cases of M, as well as different – experimentally relevant – parameter choices.

In the first part we will exclude all filtering processes as they are suppressing

correlations as shown in III A 3. This enables us to investigate the pure correlation

effects on the properties of a bi-photon state. We will find that fully correlated and

fully anti-correlated JSA have very different impact on the distinguishability of non

perfect photons, although they are carrying the same amount of entanglement.

Following this we will subsequently include filtering processes. As is well known

the latter will turn out to have positive effects on the dip-visibility, but only

for a relatively high trade-off due to negative effects of introducing filtering in

experiments: such as alignment problems, tilt of the central wavelengths, decrease

in brightness and so forth. We suggest that, for certain instances, it might even

be beneficial to exclude filtering.
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Besides other applications [22, 31, 53] it is vital to take the frequency correlations

into account to find the most appropriate description for G(2).

In the last part of this section we employ the complete description of G(2), derived

in IV A, to extract more reliable values - necessary for the network tomography -

from experimental data.

A. Further Investigations on Correlation Measurements Excluding Filtering

Excluding filtering corresponds to setting N
(G)
μ = 1 and σμ → ∞, i.e. M′ vanishes.

Taking account of this and renaming G(2) ≡ Ps1,s2(Δτ) (82) becomes

Ps1,s2(Δτ) = |be|2 + |bo|2 + (109)

(b∗ebo + c.c.) · Γ(σl, σk, θ) · χ(Δω, θ) · exp
[
− Δτ 2

M1,1 +M2,2 − 2M1,2

]
︸ ︷︷ ︸

:=t(θ,Δτ)

.

Where we have factorized the parts into three factors and set Δω ≡ ω0
s −ω0

i . Each

of which will be briefly investigated. All three depend on the angle θ that can be

interpreted as correlation angle (see (43)). They do also depend on the major and

minor axis of the ellipse, but let us assume them to be fixed for now. We have:

1. The correlation factor

Γ(θ) = 2 ·
√

det(M)

det(M+ σxMσx)
= 2 ·

√
M1,1M2,2 −M2

1,2

(M1,1 +M2,2)2 − 4M2
1,2

. (110)

2. The frequency-mismatch

χ(θ) = exp

[
−

M1,1M2,2 −M2
1,2

M1,1 +M2,2 + 2M1,2

Δω2

]
. (111)
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3. And the temporal factor

t(θ) = exp

[
− Δτ 2

M1,1 +M2,2 − 2M1,2

]
. (112)

We can now investigate the effect of the above factors on the coincidence proba-

bility (109).

For this purpose we will first examine the three factors on their own to obtain an

intuition for the way they influence the outcome. This will subsequently allow us

to trace back certain behaviors to these specific terms.

Since the first two factors are decoupled from the temporal part, for a given fre-

quency mismatch Δω = ω0
s − ω0

i , they only affect the visibility of the HOM-Dip.

V = 1− Pc(Δτ = 0)

Pc(Δτ → ∞)

= − b∗ebo + beb
∗
o

|be|2 + |bo|2
· Γ(θ) · χ(Δω, θ). (113)

1. The correlation factor Γ(θ)

We start with the “correlation factor”. Rewriting det(M + σxMσx) = det(M +

M) + (M1,1 −M2,2)
2 unveils the bounds of Γ

0 < Γ(θ) ≤ 1. (114)

Mathematically speaking the lower bond could be realized by σμ → ∞ with μ ∈
{k, l}. However, since this is a non-physical case it is justified to assume that Γ is

strictly greater than zero.

We can give a relatively simply expression for Γ(θ) in the framework of (43), that

is

Γ(θ) = 2

√√√√ 1(
σ2
l

σ2
k
+

σ2
k

σ2
l

)
cos2 2θ + 2

(
1 + sin2 2θ

) . (115)
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For σl = σk we get Γ(θ) = 1 as expected. However, in the experimentally more

realistic regime where σl > σk - i.e. our photons get less indistinguishable - we find

a very interesting behavior for Γ(θ). From (114) we know that Γ(θ) is bounded

above by 1 and from (115) we can see that this bound is indeed realized for θ = ±π
4

(the maximal correlated (+) and anti-correlated (−) case). We would like to em-

phasis that this behavior is of great interest for PDC sources applications in optical

quantum information experiments inasmuch as tuning the angle of correlation θ

- which is effectively possible by tuning the pump field, crystal length and phase

matching - we can create photons with better visibility properties from non-optimal

sources (i.e. were σl �= σk).

Bare in mind that Γ(θ) is π
2
-periodic in θ, i.e. symmetric for the correlated and

anti-correlated case, as can be seen from (115).

We depict the behavior of Γ(θ) for an exemplary value of σl/σk ≈ 3 that corre-

sponds to values, taken from a simulation for the experimentally utilized source

([54])
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Figure 14: Two exemplary plots for the correlation factor Γ(θ). (a) for a parameter
choice of the long axis σl and short axis σk of the joint spectral amplitude ellipse
such that σl/σk ≈ 3. This value was adapted from the experiment. And (b) depics
the case of σl � σk (σl/σk ≈ 100).

Varying the parameter σl

σk
changes the quantitative behavior of Γ(θ) in the sense
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that the peak is getting much sharper and narrower. Physically speaking this

corresponds to a high sensibility to correlations, i.e. a non-perfect correlation in

frequency space corresponds to a quick decrease in indistinguishability. This is cer-

tainly what one expects from the corresponding spectra (7b) where the projection

on the ωs- and ωi-axis are identical for θ = ±π
4
.

2. The frequency mismatch factor χ

We shall now proceed with the second factor, the “frequency mismatch factor”.
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Figure 15: Two exemplary cases for the mismatch factor χ(θ) for different ratios
of the long and short axis of the joint spectral amplitude ellipse – σl and σk

respectively – and different frequency mismatch Δω. (a) for σl/σk ≈ 3, with
Δω ≈ σk. And (b) for the same ratio, but with Δω ≈ 1

2
σk.

Plugging in our parametrization (43) for M we can rewrite the argument of the

exponential in χ(Δω) as

− lnχ

Δω2
=

1

2

[
σ2
l sin

2(
π

4
− θ) + σ2

k sin
2(
π

4
+ θ)

]−1

. (116)

By means of (116) it is possible to investigate how the correlations entering in χ

can affect the the coincidence probability (109).
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We note that − lnχ > 0 for finite σμ and Δω. But also − lnχ ≤ 1 as long

as Δω2

2σ2
k

≤ 1. Consequently, as long as the frequency mismatch is kept smaller

than the one sigma interval of the minor axis, the mismatch causes a reduction in

visibility by a factor that is greater than 1/
√
e.

Studying the whole range of θ, assuming a significant difference in σl and σk, (116)

reveals an asymmetric behavior:

If

0 < θ <
π

2
⇒ − lnχ

Δω2
>
[
σ2
l + σ2

k

]−1

and the maximum is obtained for the maximally correlated case of θ = π
4
.

If

−π

2
< θ < 0 ⇒ − lnχ

Δω2
<
[
σ2
l + σ2

k

]−1
,

obtaining the minimum for the maximally anti-correlated case of θ = −π
4
. How-

ever, the slope is less steep and the absolute distance at θ = π
4

from the complete

uncorrelated case (θ = 0) is smaller than that at θ = −π
4
. Fig. 15b depicts two

cases of the behavior characteristic for χ(θ). Let us stress, that the above analysis

reveals that the anti-correlated case effectively suppresses frequency-mismatch.

3. The temporal factor t

Studying the temporal factor will give indications about the temporal information

encoded in the PDC-state.

In contrast to Δω which is a non dynamical mismatch arising from experimen-

tal imperfections, Δτ is a tunable dynamic parameter in the experiment. Here

Δτ/Δω should not be confused with the temporal/frequency uncertainties which

correspond to σk/l. However, it is still worth noting that − ln t
Δτ2

= 2 · σ2
l σ

2
k · − lnχ

Δω2 ,

i.e. we can “map” a certain frequency mismatch to a temporal mismatch.

Whereas the previous two factors were only influencing the absolute value of the

visibility - as they are constant in the experiment w.r.t. Δτ - the temporal factor
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is determining the dynamical behavior w.r.t. Δτ . Therefore we shall focus on the

full half width τfwhm of (109) that is characteristic for these dynamics. By definition

τfwhm can be extracted from the equation t(θ, τfwhm) =
1
2
t(θ, 0) = 1

2
, which yields

τfwhm =
√
ln 2 ·

√
σ2
k sin

2(π
4
− θ) + σ2

l sin
2(π

4
+ θ)

σlσk

. (117)

Extracting the width of the dip from (117) highlights again how vital it is to take

frequency correlations in the JSA into account.

Fig. 16 depicts the crucial influence of the spectral correlations in just one picture.

We find that correlations for which 0 < θ < π
2

the width of the G(2)-function (HOM-

Dip) becomes broader, whereas it becomes narrower for −π
2
< θ < 0. This very

interesting behavior has also been described in [55] for states with no frequency

mismatch whilst preparing this script. However, it should be stressed that it is not

just an interesting physical behavior, but also of great importance for extracting

visibilities from experimental HOM-Dip data and thus has to be taken into account

to get reliable results.
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Figure 16: Width of the coincidence probability (109) against the correlation pa-
rameter θ. For the correlated (θ > 0) case the dip is broadening, while for the
anti-correlated (θ < 0) it is narrowing. Note that the function is asymmetric w.r.t.
θ = 0. Here we have chosen σl/σk ≈ 3.
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B. Impact on the Visibilities
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Figure 17: Exemplary behavior of the Visibilities w.r.t. θ. Here for a 50 : 50 BS.
The parameters describing the JSA are taken from experimental values (see Tbl.
V). The major axis of the joint spectral intensity corresponds to a value of about
11 nm and the minor axis is about a third of the major axis. In (a) the frequency
mismatch corresponds to a mismatch in wavelength of about 1.7 nm. In (b) it is
twice as large.



The modification of the visibility due to frequency correlations is the key point for

the network tomography and distinguishability of the photons. Fig. 17 depicts

how (110) and (111) alter the measured visibilities (113).

In fact that anti-correlated state results in a higher dip-visibility than the correlated

state. This is due to the asymmetry in χ(θ) that had been discussed in IX A 2.

Furthermore the anti-correlated state seems to be more robust against frequency

mismatch which is attributed to the less steep slope of χ(θ) in the anti-correlated

regime. Compare the change in the values at the local Extrema in in the two

regimes θ ≷ 0 in Fig. 17a and Fig. 17b. If Δω overcomes a certain threshold the

completely correlated case (θ = π
4
) is even worse than the uncorrelated case.

C. Consequence of Neglecting Correlations

If correlations are neglected the JSA factorizes into the product of the marginals.

The marginal corresponds to the partially traced out system of either idler or

signal. Or in a more picturesque way, the marginal βμ(ωμ), with μ ∈ {s, i} it is

the projection of the JSA on the ωμ-axis: βμ(ωμ) =
´

dων β(ωμ, ων). Hence

β(ωs, ωi) → βs(ωs) · βi(ωi). (118)

And if we identify s ↔ 1 and i ↔ 2 the marginal reads

βμ(ωμ) =
1

M1,1

√
2π

exp[−1

2
M1,1 · (ωμ − ω0

μ)
2]. (119)

Resulting in

β(ωs, ωi) →
1

2πM1,1M2,2

exp[−1

2

(
M1,1 · (ωs − ω0

s)
2 +M2,2 · (ωi − ω0

i )
2
)
]. (120)

(Depending on the notation, one might need to change M → γM. This is because
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we project β and not |β|2 in our notation. If we were projecting |β|2, γ would take

a value of two.) Carrying out the coincidence probability yields

P1,2(Δτ) = |be|2 + |bo|2 + (121)

(b∗ebo + c.c.)
σ1σ2

σ2
1 + σ2

2

exp

[
− Δω2

2(σ2
1 + σ2

2)

]
· exp

[
−2

σ2
1σ

2
2

σ2
1 + σ2

2

Δτ 2
]
,

were we have defined 2σ2
i = M−1

i,i . From (43) we infer that the correlated and

anti-correlated case behave identical in contrast to (121). This is conditioned by

the fact that all appearing parts are symmetric under exchange of σ1 and σ2 and

M1,1(π − θ) = M2,2(θ). I.e. changing from the correlated regime (θ > 0) to the

corresponding anti-correlated regime is equivalent to exchanging σ1 with σ2, but

since (121) is invariant under such an exchange, P1,2(Δτ) takes the same form

in the correlated regime (θ > 0) as in the corresponding anti-correlated regime

(π − θ).

Fig. 18 compares the behavior for values taken from Tbl. V and the corresponding

anti-correlated case.
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Figure 18: Comparison of the coincidence probability of a 50 : 50 BS, where values
from Tbl. V had been considered. In (18a) we depict the HOM-Dip for a correlated
JSA with θ = +60◦. (18b) depicts the anti-correlated case in which θ = −60◦.
In both cases, the blue line corresponds to the case in which the correlations are
taken into account (β(ωs, ωi)), whereas the red line corresponds to a JSA that is
set together as a product of its marginal distributions (βs(ωs)·βi(ωi)) and therefore
ignoring the correlations.



Indeed this is giving us a vital feedback for the visibility extraction for the recon-

struction. The visibilities are differing decisively. Though it should be noted that

we have not considered filtering up to now. However, we expect from the Schmidt

decomposition that the correlations will still affect the outcome, although the ef-

fect might differ. But bare in mind that this is a very interesting phenomenon on

its own and therefore investigated here.
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Figure 19: Another exemplary comparison of the coincidence probability of a
50 : 50 BS where we have considered the same values for the minor and major axis
of the JSA as we did in the previous figure (Fig. 18). The frequency mismatch is
twice as large and the correlation angles can be drawn from the figure.
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D. Including Filtering Processes

Filters are present in most experimental setups and most generally speaking they

lead to higher indistinguishability. For instance in the BosonSampling setup they

are employed to suppress additional distinguishability from longitudinal walk-off

[15, 56–58]. The idea is that narrow-band filtering tailors the coherence time of the

photons τc such that τc > δT , where δT is the temporal longitudinal walk-off of

the photons after they leave the BBO crystal [59, 60]. However, they also suppress

filtering [39] as can be inferred from Fig. 20.
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Figure 20: Schmidt modes of a JSA that corresponds to the experimental values
from Tbl VII and VIII. (a) before filtering and (b) after filtering.

Obviously, well aligned filters provide a positive effect in terms of indistinguisha-

bility, but this accomplishment is coinciding with a trade-off in brightness and

correlations. (The previous paragraph suggests that this is not necessary in every

situation. One could think of tuning the correlations rather than including filters

to accomplish better indistinguishability with the advantage of higher brightness

and one potential source of errors less.)

We will not repeat the previous investigations again. Instead, we conclude from

the behavior of the Schmidt modes (Fig. 20) that filtering strongly suppresses the

influence of correlations, but does not completely eliminate them. Let us restrict
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our investigations to the specific case from Tbl. VIII and VII. See also XIII for

details.

The functional interaction of the different factors in (84) add up to a more complex

behavior than previously. One difference is a symmetry-breaking within the cor-

related and anti-correlated regimes. Another difference is that the anti-correlated

case does no longer generally improve visibilities by suppressing frequency mis-

match (Fig. 21). This is caused by the fact that ωF
s �= ω0

s and ωF
i �= ω0

i or

ωF
s �= ωF

i which causes additional change in the effective frequency mismatch after

the filter. I.e. unlike before, where we could assume Δω = ω0
s − ω0

i to be fixed

and rotate the correlation angle θ (IX A), we do now effectively alter the centroid

frequencies of the ellipse after filtering, depending on the correlation angle θ before

filtering. (A code allowing to vary the parameters in (84) can be found in [61])

0 Π
4 70 ° Π

2
Θ
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0.94

0.96
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V��Θ�
V�Θ�

Figure 21: The visibility as a function of the correlation angle. All parameters,
except from θ are fixed according to Tbl. VII and VIII. The asymmetry of the
centroid filter frequency causes the asymmetric behavior of the visibility and it is
also responsible for the fact that V(θ) takes smaller values, as well as larger values
than V(−θ), unlike in the previous section.
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With this in mind let us now move on to investigate the case from Tbl. VIII

and VII. Fig. 21 depicts this case for all possible angles, including the one where

θ = 70◦ that had probably been used to carry out the reconstruction for [15], as

we describe in XIII.

However, the original motivation to study all these different influences was to find

an improved description for the extraction of visibilities. After the significance of

such a more complete description has now been discussed, it should now be applied

in the subsequent section.
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E. Visibility Extraction from Experimental Data
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Figure 22: 5 × 5-Network, utilized to carry out the experimental BosonSampling
in [15]. Tbl. I lists the results of visibilities, characterizing this network. Figure
taken from [26].

The procedure introduced in IV B 1 is employed to extract the visibilities. The

results obtained via. (for 87) are listed in Tbl. I and Tbl. II contains the cor-

responding errors. Extracted values for the case in which the correlations are

neglected are listed in Tbl. IX and X. (Carried out with the marginal coincidence

count rate (121)) The mean deviation between the two data sets is 0.0265. The

data is collected for a 5× 5 unitary, that corresponds to the network, depicted in

Fig. 22. The routines and experimental data are provided in [62].
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X. NETWORK TOMOGRAPHY FOR PASSIVE LINEAR OPTICAL

NETWORKS

This section shall be devoted to the different approaches to network tomography.

First we present the results for the backpropagation of errors - introduced in VII

- for the obtained experimental datasets from IX E with the method introduced

in V A. Additionally we will impose a self-consistency check for how good the

recovered network predicts the results in IX E. This will be done for the new

dataset containing the correlations, as well as for the old one that had not taken

them into account.

Thereafter we perform analytic and numeric error propagation for V B and V C

which enables us to compare these three methods subsequently.

In the last section the results for a new approach to network tomography following

VIII will be presented.

A. Backpropagation of Errors

In VII we have proposed a Monte-Carlo-like approach to error propagation whose

results are now presented.

Let us first present the resulting raw data for the 5 × 5-network (depicted in

Fig. 22). Fig. 23 depicts the respective beam-splitting and phase-shifting ratios,

resulting from a Monte-Carlo like backpropagation for the network tomography

described in V A. We have employed visibilities with a Gaussian error of variance

according to Tbl. II and generated 10000 samples for each of which a backpropaga-

tion had been carried out. For each sampling run we have run the tomography for

ten different random starting points. These starting points were uniformly picked

from the intervall [p0 − 0.1,p0 + 0.1]. Subsequently the run that minimized the

process had been selected and contributes as one of the 10000 data points. The

code can be found in [63].
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Table III: Expectation values and standard deviation for the 19 parameters
characterizing the network that had been used to carry out the experiment

resulting from the backpropagation.

Expectation Value
ω1 2.0863±0.0039

ω2 1.6953± 0.0039

ω3 1.5562± 0.0032

ω4 1.0339± 0.0037

ω5 1.4125± 0.0036

ω6 1.4220± 0.0034

ω7 1.3849± 0.0039

ω8 1.4167± 0.0042

ϕ1 −0.3082± 0.0014

ϕ2 0.3082± 0.0014

ϕ3 0.0834± 0.0010

ϕ4 −0.0834± 0.0010

ϕ5 0.2801± 0.0012

ϕ6 0.1015± 0.0008

ϕ7 0.0610± 0.0010

ϕ8 −0.1025± 0.0015

ϕ9 −0.0201± 0.0011

ϕ10 0.0201± 0.0011

ϕ11 0.1025± 0.0015

Calculating the mean and standard deviation of the dataset results in the param-

eters listed in Tbl. III. Where the error corresponds to the unbiased standard

deviation estimator of the dataset produced by the backpropagation (Fig. 23)

For each sampling run we carry out a reconstruction of the unitary, that is com-

posed of the basic building blocks (22) that depend on the reconstructed param-

eters according to the decomposition in XVII. This yields the following estimator
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for the matrix UV including error bounds ΔUV.

ReUV =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0333 0.0703 −0.2817 0.1214 0

0.0095 −0.3869 −0.1386 −0.7828 0.0167

−0.7709 −0.2951 −0.2707 0.0233 −0.2474

0.1473 −0.1527 −0.1408 −0.1330 0.0116

0.2244 0.0735 −0.7887 0.0875 0.4164

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (122)

ImUV =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.3379 0.8200 −0.1075 −0.3192 0

0.2751 0.1809 0.2078 −0.1558 −0.2052

−0.2410 −0.0047 −0.0191 0.3532 −0.0201

−0.2620 −0.0859 0.3597 −0.0092 0.8432

0.1262 −0.1308 −0.0304 0.3093 −0.1072

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

ReΔUV =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0012 0.0015 0.0009 0.0007 0

0.0010 0.0014 0.0011 0.0007 0.0003

0.0009 0.0012 0.0010 0.0013 0.0009

0.0007 0.0006 0.0016 0.0008 0.0006

0.0008 0.0004 0.0007 0.0011 0.0010

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (123)

ImΔUV =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0013 0.0009 0.0006 0.0011 0

0.0010 0.0009 0.0010 0.0006 0.0007

0.0012 0.0009 0.0007 0.0010 0.0004

0.0008 0.0004 0.0010 0.0007 0.0006

0.0007 0.0007 0.0008 0.0009 0.0015

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (124)

Given (122) the self-consistincy check can be performed and compared to the set

of visibilities from (148). The self-consistency check is performed by extracting

the set of visibilities VP from UNBS via (85) and comparing there deviation by

means of the quality witness defined in (106) to the set of visibilities extracted VE
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in IX E. This procedure yields the following value for the self-consistency witness

Q0 = 0.0145. (125)

The relative deviation QR, i.e. the Q-value as fraction of the averaged absolute

experimentally extracted and predicted visibilities, VE and VP respectively, yields

correspondingly

QR =
Q0∥∥V E + VP

∥∥ /2 = 0.0327. (126)

Meaning that the deviation is about 3% which should be compared to the re-

spective value that results from the old extraction procedure Q∗ = 0.0756 and

correspondingly Q∗
R = 0.1743 which is about 17%. Thus we conclude that we have

indeed improved the extraction procedure by taking into account correlations.

Note also that the value of QR is very close to the average standard deviation

of the Visibilities (0.0184, i.e. around 2%) which provides further evidence that

the obtained data (Tbl. I as well as (122)) is indeed trustworthy and much more

reliable than the previously used data.

The self-consistency witness had been collected for each sampling run.

The respective values in each run yield the following minimal and maximal values

for Q
Qmin = 0.0145 and Qmax = 0.0159. (127)

It is worth focussing the attention to the errors of the reconstructed parameters

in Tbl. III and those for the unitary ΔUV. First of all we note that the resulting

standard deviations for the phase shifter ϕμ seem to be smaller than those for

the beam splitting ratios ωμ. Indeed, the beam splitting ratios are larger than the

phase shifting ratios and hence the relative error is not smaller. However, from Fig.

23 we know that the distributions are rather Gaussian and we should therefore not

consider the relative error. Our interpretation of this behavior is that the phase
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shifting ratios in (89) do only enter as a sum in the cosine and thus, when small

error are imposed on them, they have a smaller impact on the visibilities than the

beam splitting ratios. A handwavy interpretation for this behavior might be that

some of the phases can be seen as embedded in a Mach-Zehnder-Interferometer

which can again be represented by an efficient beam splitter [30]. Thus the error

might be propagated back to such a beam splitting ratio rather than the original

phase itself. Further investigations should be made and alternative interpretations

are possible.

However, carrying out a forward propagation for the set of visibilities with the

errors found for the characterizing parameters - pμ, where p ∈ {ω, ϕ} - and for the

entries of the unitary we find that they are in good agreement with the errors of

the initial data (Tbl. II) from which had been sampled to perform the backprop-

agation. This provides further evidence for the stability of the algorithm. The

average error for the visibilities obtained from (122) is ε̄BP = 0.0053, whereas the

average error in Tbl. II yields ε̄E = 0.0081. Note that the sum of these two values

are roughly Q.

The explanation we propose for this behavior has been the starting point for

the improved approach for reconstructing the network’s unitary via tomography

methods that we have suggested in VIII. We propose that the significant drop in

standard deviations from the inital set of data to the set of parameters pμ (the beam

splitting and phase shifting angles) that remain after the backpropagation is caused

by forcing unitary constraints throughout the tomography process. As described

in V A this is accomplished because the structure of the network is known and

by applying this structure in (88) the optimization routine we efficiently impose

additional constraints, i.e. we reduce the degrees of freedom in our system. This

leads to the reduced standard deviation of p. Similar to the inverse behavior

were we wish to calculate the estimator of the standard deviation s for n data

points under ν additional constraints for the data points: s = 1√
n−ν

√∑
i(xi − μ)2
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. Therefore we conclude that applying unitary constraints throughout the network

tomography might be beneficial.

B. Forwardpropagation of Errors

In this section the susceptibility of the network tomography introduced in V B

and V C shall be investigated. This will be done in two steps. First we give

some analytical results obtained in the manner of a stability analysis, i.e. the

error is propagated forward. Then we follow a further numerical Monte-Carlo

like approach, similar to what has been done in the previous section. The term

“forwardpropagation” might be slightly confusing and we mainly use it to clarify

that it is different from the previous approach.

1. Brisbane

For the method introduced in V C an error propagation is straight forward. Each

complex matrix entry of the reconstructed unitary uij is obtained as the polar

decomposition of the matrix mij build as the product of the modulo rij and the

respective phase-factor eiθij mij = rij · eiθij . The measured observables are rij

and θij. Therefore we impose errors on these quantities: rij → rij + δrij and

θij → θij + δθij. Thus we obtain mij → mij (e
iδθij +

δrij
rij

). The phase-factor

occurring in the brackets rotates each entry of the initial matrix slightly away from

its true value. Additionally the second part in the brackets imposes a rescaling for

each entry. Expanding the exponential eiδθij ≈ 1 + iδθij +O(δθ2ij) yields

mij → mij +mij(iδθij +
δrij
rij

)︸ ︷︷ ︸
≡δmij

. (128)

However, another step is performed, namely the polar decomposition of M from
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which we obtain the desired unitary U. If ε = ‖δM‖ / ‖M‖ satisfies κF (M) ·ε < 1,

performing a the polar decomposition of M → M+ δM yields [64]

M+ δM = (U+ δU) (H+ δH) , (129)

where
‖δU‖F
‖U‖F

≤ (1 +
√
2)κF (M) · ε+O(ε2). (130)

‖.‖F denotes the Frobenius norm and κF (M) the condition number of M in the

Frobenius norm. Therefore we conclude that, in the case that δmij � N (0, σ2)

with σ ≈ ε, the polar decomposition only causes small variations as κF (M) would

be expected to be close to one.

It is worth noting though that another consequence of (130) is that this approach

is very sensitive to corrupt input (rij/θij) because it propagates straight through

the reconstruction procedure and hence raises ε which can quickly yield a violation

of the bound κF (M)ε < 1. This gives raise to the question if an improvement of

the procedure is possible by introducing some kind of feedback loop. The proposed

approach from VIII can be seen as such an additional feedback loop.

Let us now proceed with the analysis of the approach introduced in V B.

2. Bristol

For this approach the experimental observables are one photon transmission am-

plitudes τij and two-photon visibilities Vij.

Perturbing these observables results in the following first order transformation

for (92): M1 → M1 + δM1. If the perturbations δτij and δVij are small, they

cause the following explicit transformation for each element xij and αij in Mμ:
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xij → xij + δxij, where in first order approximation

δxij = xij

(
δτij
τij

+
δτkl
τkl

− δτkj
τkj

− δτil
τil

)
, (131)

and αij → αij + δαij, where in first order approximation

δαij = − 1

2
√

1− (1
2
Vij · (xij + x−1

ij ))
2
· (132)

[
(xij + x−1

ij )δVij + (xij − x−1
ij )

(
δτij
τij

+
δτkl
τkl

− δτkj
τkj

− δτil
τil

)]

= −
(xij + x−1

ij )

2
√

1− (1
2
Vij · (xij + x−1

ij ))
2
·
[
δVij +

(x2
ij − 1)

(x2
ij + 1)

· δxij

xij

]
.

And thus mμ,ij → mμ,ij + δmμ,ij with

δmμ,ij = mμ,ij (δxij + iδαij) . (133)

As before we are interested in finding a bound for the error on the recovered unitary
‖δU‖
‖U‖ caused by δMμ, i.e. the errors imposed on the input data for the network

tomography. Similar to the previous procedure, a polar decomposition needs to

be applied to M1 in order to perform the next steps of the tomography algorithm

(see V B). As above, this results in

M1 + δM1 = (U+ δU)1 (H+ δH)1 , (134)

where
‖δU1‖F
‖U1‖F

≤ (1 +
√
2)κ1(M1) · ε+O(ε2). (135)

Here κμ is again the condition number of M1 in the Frobenius norm. In order to

obtain the unitary U that is characterizing the network another step needs to be

applied. Namely the system of equations Mμτ = n needs to be solved in order
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to obtain the single photon transition amplitudes. This corresponds to inverting

Mμ. But with (133) we have Mμ → Mμ + δMμ. I.e. the inversion performed

undergoes the following transformation: M−1
μ → (Mμ + δMμ)

−1.

Now, in order to obtain an upper bound similar to (130) we differentiate the

equation M−1
μ Mμ = I

d
(
M−1

μ

)
Mμ +M−1

μ dMμ = 0. (136)

Rearranging and taking the norms yields

∥∥dM−1
μ

∥∥
‖Mμ‖

≤ ‖Mμ‖
∥∥M−1

μ

∥∥︸ ︷︷ ︸
=κμ(Mμ)

‖dMμ‖
‖Mμ‖

. (137)

Combining (137) with (135) then yields the following bound

∥∥δM−1
μ

∥∥
‖Mμ‖

≤ κμ(Mμ) · κ1(M1) · (1 +
√
2)ε. (138)

Therefore the fractional change can be κμ(Mμ) times larger than (130). To ob-

tain actual values numerical experiments have been performed and the results are

subject of section X E.

Furthermore, and as mentioned in the previous section, the approach is sensitive

to corrupt inputs (τij/Vij) as it does not contain any kind of feedback loop or

(unitary) constraints for Mμ.

C. Experimental Results for ’Bristol’ and ’Brisbane’

This section will provide experimental results obtained for the ’Bristol’ and ’Bris-

bane’ method for the BosonSampling network (Fig. 22). In the spirit of X A

we shall compare the resulting Q-values as a measure for the quality of the re-

spective network tomography. Furthermore we argue that permuting the matrix
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prior, as proposed in [24], does not improve the ’Bristol’ approach. Instead we

propose a rudimentary feedback scheme for both approaches that can lead to an

improvement.

1. Brisbane

It seems suitable to present the experimental results, carried out for the same

5× 5 network (Fig. 22). The raw data is attached in XV (At this point we like to

mention that the obtained data had been taken for the version of V C that is not

considering loss). So let us proceed with the resulting quality measure Q obtained

from the reconstructed unitary. The result reads as follows

Q0 = 0.0232 and QR = 0.0527. (139)

Which is slightly worse than (125).

Both results (139) and (125) are very close to the errors of the extracted data and

deviations might be explained by results that have not been taken into account (e.g.

higher order and for (139) also loss as we mentioned above). Which, again, raises

the question if we could implement some additional post processing feedback-loop

that improves the raw data obtained. We like to mention that we have also carried

out the the reconstruction for 10000 Monte-Carlo propagation sampling runs and

taken the mean of U over all these samples to calculate Q. However, because of

128 one expects this to yield the same as carrying out the reconstruction for M if

δmij is symmetric. And indeed both yield the same result.

However, performing a backwards propagation and collecting the respective self

consistency witnesses in each run yields the following minimal and maximal values

for the self-consistency witness

Qmin = 0.0192 and Qmax = 0.0353. (140)
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Table IV: Numerically obtained values for the self-consistency witness for the
BosonSampling network for the three different approaches ’Brisbane’, ’Bristol’

and ’Vienna’.
Qmin Q0 Qmax

Brisbane 0.0192 0.0232 0.0353

Bristol 0.0173 0.0362 0.0948

Vienna 0.0145 0.0145 0.0159

Here we have performed 20000 sampling runs to obtain the maximal and minimal

bounds.

2. Bristol

Performing the reconstruction with measurement data from Tbl. XIII and Tbl.

I and without any sampling (the unitary is given in (149)), yields the following

value for the self-consistency witness

Q0 = 0.0362 and QR = 0.0821. (141)

This value should be compared to (125) in order to judge the performance of the

two approaches (for this particular network). We will compare and discuss all

results in X D.

Performing 10000 Monte-Carlo runs yields the minimal and maximal values for

the self-consistency witness yield

Qmin = 0.0173 and Qmax = 0.0948. (142)

D. Summary of the Results

This section summarizes and discusses consequences of the numerical results ob-

tained for the BosonSampling network. We have evaluated the self-consistency
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witness as a quality measure. The results are listed in Tbl. IV. Some remarks:

1. For ’Vienna’ the mean value Q0 coincides with the minimum value Qmin.

This is because Q0 is a function of the expectation value of the recovered

19 parameters p0 which is the value that minimizes (88). The fact that

Q0 = Qmin is basically just stating that the procedure is self consistent

and that the extracted visibilities Vij are indeed the best choice (within the

accuracy of our statistics).

2. The Q-values obtained by ’Vienna’ are always smaller than the Q-values

obtained for any of the other methods. We are interpreting this as a conse-

quence of the fact that we apply unitary constraints throughout the network

tomography. Therefore, as long as the errors are not to large, the parame-

ters in each sampling run pS always locate close to the expected parameter

vector p0. Further analytical investigations should investigate this.

3. The Q-value es obtained for ’Bristol’ and ’Brisbane’ are well explained by

our analytical investigations from X B. The average and extreme cases for

’Bristol’ seems to be slightly worse than those for ’Brisbane’, as expected

and explained by comparing the bounds (130) and (138).

We would like to add one more remark. As mentioned in [24] one could think

about permuting the matrix prior or employing additional subsets to improve the

robustness to noise. If we consider the statistical ensemble of the noise imposed

primary data this should average out though. I.e. reconstructing for each possible

subset of visibilities should not bring any advantage as the errors are not assumed

to behave biased in any way.

However, one could improve the procedure by applying a self-consistency check

in the following manner. Experimental measurement provide us with the primary

data τ̃ij and Ṽij (accordingly for r̃ij and θ̃ij). As previously one imposes the re-

spective errors on this set of data. Now one samples from the respective error
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distributions and reconstructs U for the corresponding set of data Ṽij + δVij and

τ̃ij+δτij . This is done for S sampling runs. For each of these runs the correspond-

ing self-consistency witness is calculated as QS =
∥∥∥Ṽ − VS(US)

∥∥∥. Subsequently

one chooses the sampling run S that is minimizes QS and hence obtains US.

It should be emphasized that the utility of this self-consistency check does strongly

depend on the accuracy with which the primary data τ̃ and Ṽ had been extracted.

And in fact, we have propose a physically more sensible approach to improve the

tomography in VIII that is taking the natural unitary structure of network into

account. In the following section we provide numeric evidence for this result.

E. Extension and Improvement

In VIII we have proposed a new approach to improve the quality of network to-

mography. Besides the arguments given in that section we do now provide further

numerical evidence that this approach is indeed accomplishing the desired im-

provements. Furthermore, we give numerical evidence for the error scaling found

in (X B).

For that purpose we have carried out the numerical experiment proposed in VIII.

Fig. 24 depicts the results for dimensions D = 4, . . . , 7. For the numerical exper-

iment we have created 20 random Haar unitaries. For each of these unitaries we

have drawn 20 (S = 1, . . . , 20) sampling sets of measurement data (Ṽij + δVij and

τ̃ij + δτij (θ̃ij + δθij and r̃ij + δrij)) from the respective error distributions. These

error distributions are characterized by the variance of the underlying normal dis-

tribution δ ∈ [0.01, . . . , 0.1] (note though that for instance δτij �= δ as described

in the methods). We have chosen δ ∈ [0.01, . . . , 0.1] as higher values seem to be

unrealistic because if the measurement precision was worse it would not be worth

to do an experiment in the first place.

The sampling sizes (20 sampling runs for each of the 20 Haar unitaries) should
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be increased further to provide better statistics. Due to the relatively high time

requirements, especially for higher dimensions, we have restricted ourselves to this

relatively small sample size (400 runs for each of the ten width of the underlying

normal distribution and each approach ⇒ 8000 optimization runs for each dimen-

sion). We would like to stress that they are qualitatively in agreement with the

analytical investigations conducted in sections X B and X E.

The numerical results support our findings from section X B and arguments given

in section X E. Considering Fig. 24 and comparing the results obtained for the

different approaches to network tomography provides further evidence for both:

The fact that we expect ’Bristol’ to be less robust to errors than ’Brisbane’, as well

as for the improvement due to the post processing optimization. ’Brisbane’ seems

to scale linearly as one expects from (128), whereas ’Bristol’ exhibits a less obvious

behavior (see (133)) and more fluctuations. We are interpreting the fluctuations

as a consequence of the bad response to corrupt values of this approach. The

scaling behavior does depend on the condition number of the underlying matrices

as we have shown in X B and these condition numbers can differ significantly for

the different matrices Mμ. Additionally the errors do not enter directly as they

do for ’Bristol’. They first undergo additional transformations which makes them

behave rather “unpredictable” (see also (131) and (132)).

Let us now drag the attention to the new version (or improved versions of these

two approaches).

First, we note that, without exception, improvement is obtained for both methods

(see Fig. 24). Note that we converge into different minima though. Second, the

improvement obtained increases with the errors imposed on the primary data.

This is interesting as it means that we obtain an improvement that is better than

O(1) by applying “unitary optimization”. Finally we would like to emphasize that

the size of the error bars in Fig. 24 is related to how strong the reconstructed

unitaries scatter around the true one. It can be seen as a measure of how robust the
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reconstruction is to the imposed perturbations. And indeed the results agree with

what we expect from our analytical arguments derived in section X B. Namely the

results obtained via ’Bristol’ show worse behavior which is caused by the complex

functions and the additional matrix inversion that has to be carried out.
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XI. CONCLUSION & OUTLOOK

In conclusion, the description of two-photon quantum interference in passive lin-

ear optical circuits was successfully extended by including frequency correlations.

Those frequency correlations have an huge influence on the shape and visibility of

the quantum interference feature and can both increase and decrease the dip-width

and -visbility. This is an important finding as narrowband interference filters can

typically reduce the frequency correlations, but they can never totally suppress

them. This improved description was then applied in the modeling of experimen-

tal data generated with a 5 × 5 BosonSampling network. The thereby generated

primary data set of 100 dip-visibilities was used to carry out a network tomography

using two different techniques [24, 26], expanded by a numeric error propagation.

A self-consistency check was implemented to provide an evaluation of the differ-

ent approaches ’Bristol’ [24], ’Brisbane’ [25] and ’Vienna’ [26]. A Monte-Carlo

like backpropagation of errors for the approach ’Vienna’ was implemented which

yielded a confidence region for the BosonSampling network used in the experiment.

The obtained results suggest that active approaches to network tomography con-

taining feedback routines, such as the ’Vienna’ approach, result in better error ro-

bustness than passive schemes like the ’Bristol’ or ’Brisbane’ method. Additional

analytical arguments support this interpretation. This was done by performing an

analytical error propagation for the two approaches ’Brisbane’ and ’Bristol’. This

analysis revealed that especially in the case of ’Bristol’ errors propagate unfavor-

ably and can affect the outcome in a negative way.

Finally, we conclude that ’Vienna’ provides the best approach to network tomogra-

phy under the condition that the initial points are close to the actual parameters.

We consider this condition to be the primary drawback of this active method and

resolve it by providing the initial guess with a passive scheme (preferable ’Bris-

bane’). The approach ’Vienna’ can be applied to the two passive schemes and

extends them by an additional post-processing optimization, forcing unitarity in
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a natural manner. Using these techniques it was possible to outperform all of the

previously known approaches which we could verify numerically.

Consequently, this approach improves current network tomography techniques

which are essential for present and future applications of integrated linear optical

waveguide circuits and is the best choice for network tomography that is currently

known. An open question is the scalability of our methods for higher dimensions.
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Appendix
XII. NORMALIZATION OF THE JSA AND FILTER FUNCTION

Before applying filtering the JSA is given by (45), i.e.

β(ωs,ωi) =
1√
N

exp

[
−1

2
(ω − ω0)

TM(ω − ω0) + iωTτ

]
.

The normalization condition reads

ˆ ˆ
dωsdωi |β(ωs, ωi|2 !

= 1. (143)

Or equivalently

N =

ˆ ˆ
dω exp

[
−1

2
(ω − ω0)

TX(ω − ω0)

]
. (144)

To carry out the integral we can exploit the symmetry of X = 2M. Since X is

symmetric it can be diagonalized by the orthogonal transformation X = OTDO,

where O is an orthogonal matrix and D a positive diagonal matrix. Now we

substitute ν = (ω − ω0) and then ν → Oν. Both transformation have unit

Jacobian, detO = 1. After the substitution we end up with a Gaussian integral

with exponent −1
2
νTDν. But since D is diagonal the integral factorizes into two

Gaussian integrals. Each of them contributes
√

2π
di,i

, thus for an N dimensional

integral we have
√

(2π)N∏
i di,i

. But,
∏

i di,i = detD = detX. Therefore (144) becomes

N =

√
(2π)2

detX
=

√
(2π)2

det 2M
=

√
(2π)2

22 detM
=

π√
detM

. (145)
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A similar procedure yields the normalization for the Filter function (48)

Tμ(ωμ) =

√
N

(G)
μ exp

[
−
(ωμ − ωF

μ )
2

2σ2
μ

]
.

The normalization condition in this case reads

ˆ
dωμ |Tμ(ωμ)|2 !

= Tμ. (146)

Where Tμ is the transmissivity of the respective filter over the whole spectrum.

Thus we obtain for the normalization constant

N (G)
μ =

Tμ

π · σ2
μ

(147)

XIII. EXPERIMENTAL VALUES FOR THE JSA AND FILTER

Table V: Assumed values for the JSA.

λ0
s [nm] λ0

i [nm] σl [nm] σk [nm] θ

790.63 788.90 9
2
√
ln 2

2.77
2
√
2 ln 2

±60◦

Table VI: Measured values for the utilized filters. The subscript is not uniquely
determined because the arm in which the filter was mounted was uncertain

λF
s/i [nm] λF

i/s [nm] σF
s/i [nm] σF

i/s [nm] Ts/i [%] Ti/s [%]

789.13 788.09 3.05
2
√
ln 2

3.41
2
√
ln 2

84 75

Table VII: Assumed values for the JSA.

λ0
s [nm] λ0

i [nm] σl [nm] σk [nm] θ

790.63 788.90 11
2
√
ln 2

11/3

2
√
2 ln 2

±70◦
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Table VIII: Assumed values for the filters.

λF
s [nm] λF

i [nm] σF
s [nm] σF

i [nm] Ts [%] Ti [%]
788.45 789.05 3.0

2
√
ln 2

3.0
2
√
ln 2

84 75

The aim of this section will be to bring the three parts from IX A together in a

more vivid picture. To do so, we will investigate (109) for the whole temporal

range.

From simulations of the PDC source [54] we extract probable values for σl and σk,

as well as θ. It should be emphasized that these values might differ from the real

values to which we do not have access (though there are techniques which allow

obtaining this data [65]). Furthermore the marginal signal- and idler- spectrum

had been measured respectively to obtain the center frequencies [66]. Tbl. V lists

the values that were utilized.

Additionally, the filter intensity distributions [67] and marginals after applying

filtering [66] had been measured. The resulting values are listed in Tbl. VI.

However, these measurements were made after the original experiment had been

moved, i.e. deviations are very likely. To circumvent these inaccuracies we have

applied an additional optimization in which we have have minimized the deviation

between the marginal values that had been measured after the filters and (49).

Where we have restricted the parameters to values laying in a close region around

those from Tbl. VI and Tbl. V.

This procedure yields.

XIV. EXTRACTED EXPERIMENTAL VISIBILITIES WHEN CORRE-

LATIONS ARE NEGLECTED
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)

0.
56
60
4

0.
54
03
2

0.
15
38
6

−
0.
11
30

−
0.
23
10
1
−
0.
32
21
3

0.
51
47
6

0.
60
99
2

−
0.
29
58
0

0.
43
27
3

(2
,5
)

0.
80
07
2

−
0.
37
04
0
−
0.
08
03
7

0
0.
18
54
1

0.
09
04
6

0
0.
39
41
7

0
0

(3
,4
)

0.
88
34
5

−
0.
58
54
9

0.
25
03
0

0.
60
24
8

0.
49
07
4

−
0.
20
12
9
−
0.
51
56
3

0.
64
72
7

0.
98
36
4

−
0.
60
23
3

(3
,5
)

0.
45
95
7

0.
83
64
1

−
0.
86
62
4

0
−
0.
62
19
3

0.
64
54
1

0
0.
83
56
0

0
0

(4
,5
)

−
0.
38
70
1

0.
82
48
2

0.
37
92
7

0
0.
22
69
8

0.
08
72
1

0
−
0.
61
35
1

0
0



Table
X

:T
he

to
T

bl.
IX

associated
errors.

(t
1 ,t

2 )

(s
1 ,s

2 )
(4,5)

(3,5)
(2,5)

(1,5)
(3,4)

(2,4)
(1,4)

(2,3)
(1,3)

(1,2)

(1,2)
0.03376

0.01009
0.01036

0.00540
0.00870

0.00912
0.00468

0.00307
0.00230

0.00419

(1,3)
0.00814

0.00222
0.00463

0.00451
0.00448

0.00860
0.00705

0.00667
0.00501

0.00807

(1,4)
0.01206

0.00565
0.00675

0.01275
0.01336

0.00480
0.01052

0.00247
0.00451

0.00331

(1,5)
0.00714

0.00444
0.00871

0
0.00215

0.00613
0

0.00736
0

0

(2,3)
0.01177

0.00419
0.00263

0.00160
0.00791

0.00618
0.00361

0.01046
0.00408

0.00642

(2,4)
0.02326

0.01063
0.00604

0.00433
0.01744

0.00911
0.01005

0.00467
0.00463

0.00244

(2,5)
0.01019

0.00981
0.00544

0
0.00431

0.00278
0

0.00789
0

0

(3,4)
0.00852

0.00689
0.00245

0.00498
0.00892

0.00440
0.01130

0.00548
0.00809

0.00716

(3,5)
0.00261

0.00555
0.01091

0
0.00786

0.00600
0

0.01233
0

0

(4,5)
0.00614

0.00823
0.00417

0
0.00400

0.00172
0

0.00793
0

0
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Table XI: Measured intensities. For the sampling we have imposed poissonian
errors.

output
input

1 2 3 4 5

1 0.1141 0.6969 0.0961 0.1181 0

2 0.0915 0.1740 0.0626 0.6308 0.0452

3 0.6480 0.0805 0.0711 0.1337 0.0637

4 0.0838 0.0280 0.1519 0.0148 0.7209

5 0.0626 0.0207 0.6183 0.1026 0.1702

ReUV0
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0320 0.0724 −0.2780 0.1228 0

0.0114 −0.3863 −0.1353 −0.7842 0.0124

−0.7757 −0.2937 −0.2677 0.0267 −0.2476

0.1444 −0.1518 −0.1392 −0.1327 0.0203

0.2225 0.0715 −0.7929 0.0871 0.4123

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (148)

ImUV0
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.3370 0.8203 −0.1060 −0.3220 0

0.2751 0.1860 0.2073 −0.1502 −0.2036

−0.2328 0.0018 −0.0162 0.3517 −0.0151

−0.2611 −0.0840 0.0839 −0.0092 0.8449

0.1231 −0.1293 −0.0268 0.3067 −0.1121

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

XV. DATASET OBTAINED FOR “BRISBANE”

ReUBA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.3344 0.8287 0.2985 0.33497 −0.0032

0.2953 −0.0988 −0.0921 0.0087 −0.1459

0.8068 −0.2863 0.1149 −0.1956 0.1137

0.2912 −0.0358 −0.1305 −0.0850 −0.1482

0.2551 −0.0323 −0.4806 0.2677 −0.0183

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (149)
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Table XII: Mean values of the measured phases in rad. The mean values and
errors are a rough estimate obtained by measuring the over complete set of
visibilities. I.e. the relative phases have been measured for each possible

reference mode and not just for one.

output
input

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(1, 1) 0 0 0 0 0

(1, 2) 0 −1.8380 1.9262 1.5697 2.3603

(1, 3) 0 3.0500 1.1161 −2.1475 −1.0974

(1, 4) 0 1.8003 −1.9295 −2.2440 1.7501

(1, 5) 0 1.7939 −2.2142 0.5677 −1.6230

Table XIII: Measured one photon transition intesities. Note also the difference,
compared to Tbl. XI that indicates that errors are indeed present.

output
input

1 2 3 4 5

1 0.1358 0.7056 0.1265 0.1311 0.0002

2 0.0970 0.1831 0.0826 0.6674 0.0606

3 0.6499 0.0763 0.0871 0.1132 0.0761

4 0.0671 0.0200 0.1388 0.0130 0.6811

5 0.0503 0.0150 0.5651 0.0753 0.1820

UBA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0061 0.0022 −0.0066 −0.0055 −0.0031

0.0011 0.4086 −0.2379 −0.7934 −0.1412

−0.0002 −0.0356 −0.2348 0.3124 0.2205

−0.0032 −0.1712 0.3629 0.1057 −0.8334

−0.0052 −0.1471 0.6305 −0.1791 0.4236

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (150)

Note that the the boarders are not real and
(
UBA

)
1,5

�= 0. This is caused by the

polar decomposition.
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XVI. DATASET OBTAINED FOR “BRISTOL”

ReUB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.3173 −0.8428 0.1449 −0.1754 −0.0095

0.2851 0.053718 + 0.39242i 0.1724 −0.6974 −0.2049

0.8167 0.2783 0.27285 0.3529 0.2377

0.2966 0.047279− 0.15226i −0.4313 0.1311 −0.7739

0.2511 0.042948− 0.12674i −0.7570 −0.2893 0.3856

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (151)

ImUB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −0.1100 −0.2366 0.2629 −0.0101

0 0.3924 0.1893 −0.4019 −0.0800

0 0 0 0 0

0 −0.1523 −0.0524 −0.0310 0.2843

0 −0.1267 0.1459 0.1608 −0.2578

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (152)

Note that
(
UB

)
1,5

�= 0 which is caused by the polar decomposition. The fact that

the third row is real instead of the first is originating from permuting the first row

with the third in order to apply the network tomography (no vanishingly small

elements in the first two row are permitted).
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XVII. BOSONSAMPLING UNITARY

U(1, 1) = eiΦ1 sin (Ω1) sin (Ω5)− eiΦ2+iΦ5 cos (Ω1) cos (Ω5) sin (Ω3)

U(2, 1) = eiΦ2 cos (Ω1)
(
−eiΦ6+iΦ10 cos (Ω3) cos (Ω7) sin (Ω6)− eiΦ5+iΦ9 sin (Ω3) sin (Ω5) sin (Ω7)

)
−eiΦ1+iΦ9 cos (Ω5) sin (Ω1) sin (Ω7)

U(3, 1) = eiΦ2 cos (Ω1)
(
eiΦ6+iΦ10 cos (Ω3) sin (Ω6) sin (Ω7)− eiΦ5+iΦ9 cos (Ω7) sin (Ω3) sin (Ω5)

)
−eiΦ1+iΦ9 cos (Ω5) cos (Ω7) sin (Ω1)

U(4, 1) = −eiΦ2+iΦ6+iΦ11 cos (Ω1) cos (Ω3) cos (Ω6) sin (Ω8)

U(5, 1) = eiΦ2+iΦ6+iΦ11 cos (Ω1) cos (Ω3) cos (Ω6) cos (Ω8)

U(1, 2) = −eiΦ2+iΦ5 cos (Ω5) sin (Ω1) sin (Ω3)− eiΦ1 cos (Ω1) sin (Ω5)

U(2, 2) = eiΦ1+iΦ9 cos (Ω1) cos (Ω5) sin (Ω7)

+eiΦ2 sin (Ω1)
(
−eiΦ6+iΦ10 cos (Ω3) cos (Ω7) sin (Ω6)− eiΦ5+iΦ9 sin (Ω3) sin (Ω5) sin (Ω7)

)
U(3, 2) = eiΦ1+iΦ9 cos (Ω1) cos (Ω5) cos (Ω7)

+eiΦ2 sin (Ω1)
(
eiΦ6+iΦ10 cos (Ω3) sin (Ω6) sin (Ω7)− eiΦ5+iΦ9 cos (Ω7) sin (Ω3) sin (Ω5)

)
U(4, 2) = −eiΦ2+iΦ6+iΦ11 cos (Ω3) cos (Ω6) sin (Ω1) sin (Ω8)

U(5, 2) = eiΦ2+iΦ6+iΦ11 cos (Ω3) cos (Ω6) cos (Ω8) sin (Ω1)

114



U(1, 3) = −eiΦ3+iΦ5 cos (Ω3) cos (Ω5) sin (Ω2)

U(2, 3) = −eiΦ4+iΦ7+iΦ10 cos (Ω2) cos (Ω6) cos (Ω7) sin (Ω4)

−eiΦ3 sin (Ω2)
(
eiΦ5+iΦ9 cos (Ω3) sin (Ω5) sin (Ω7)− eiΦ6+iΦ10 cos (Ω7) sin (Ω3) sin (Ω6)

)
U(3, 3) = eiΦ4+iΦ7+iΦ10 cos (Ω2) cos (Ω6) sin (Ω4) sin (Ω7)

−eiΦ3 sin (Ω2)
(
eiΦ5+iΦ9 cos (Ω3) cos (Ω7) sin (Ω5) + eiΦ6+iΦ10 sin (Ω3) sin (Ω6) sin (Ω7)

)
U(4, 3) = eiΦ3+iΦ6+iΦ11 cos (Ω6) sin (Ω2) sin (Ω3) sin (Ω8)

+eiΦ4 cos (Ω2)
(
eiΦ8 cos (Ω4) cos (Ω8) + eiΦ7+iΦ11 sin (Ω4) sin (Ω6) sin (Ω8)

)
U(5, 3) = eiΦ4 cos (Ω2)

(
eiΦ8 cos (Ω4) sin (Ω8)− eiΦ7+iΦ11 cos (Ω8) sin (Ω4) sin (Ω6)

)
−eiΦ3+iΦ6+iΦ11 cos (Ω6) cos (Ω8) sin (Ω2) sin (Ω3)

U(1, 4) = eiΦ3+iΦ5 cos (Ω2) cos (Ω3) cos (Ω5)

U(2, 4) = eiΦ3 cos (Ω2)
(
eiΦ5+iΦ9 cos (Ω3) sin (Ω5) sin (Ω7)− eiΦ6+iΦ10 cos (Ω7) sin (Ω3) sin (Ω6)

)
−eiΦ4+iΦ7+iΦ10 cos (Ω6) cos (Ω7) sin (Ω2) sin (Ω4)

U(3, 4) = eiΦ4+iΦ7+iΦ10 cos (Ω6) sin (Ω2) sin (Ω4) sin (Ω7)

+eiΦ3 cos (Ω2)
(
eiΦ5+iΦ9 cos (Ω3) cos (Ω7) sin (Ω5) + eiΦ6+iΦ10 sin (Ω3) sin (Ω6) sin (Ω7)

)
U(4, 4) = eiΦ4 sin (Ω2)

(
eiΦ8 cos (Ω4) cos (Ω8) + eiΦ7+iΦ11 sin (Ω4) sin (Ω6) sin (Ω8)

)
−eiΦ3+iΦ6+iΦ11 cos (Ω2) cos (Ω6) sin (Ω3) sin (Ω8)

U(5, 4) = eiΦ3+iΦ6+iΦ11 cos (Ω2) cos (Ω6) cos (Ω8) sin (Ω3)

+eiΦ4 sin (Ω2)
(
eiΦ8 cos (Ω4) sin (Ω8)− eiΦ7+iΦ11 cos (Ω8) sin (Ω4) sin (Ω6)

)
U(1, 5) = 0

U(2, 5) = eiΦ7+iΦ10 cos (Ω4) cos (Ω6) cos (Ω7)

U(3, 5) = −eiΦ7+iΦ10 cos (Ω4) cos (Ω6) sin (Ω7)

U(4, 5) = eiΦ8 cos (Ω8) sin (Ω4)− eiΦ7+iΦ11 cos (Ω4) sin (Ω6) sin (Ω8)

U(5, 5) = eiΦ7+iΦ11 cos (Ω4) cos (Ω8) sin (Ω6) + eiΦ8 sin (Ω4) sin (Ω8)
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