
 

 

 

MAGISTERARBEIT / MASTER’S THESIS 

Titel der Magisterarbeit / Title of the Master‘s Thesis 

     An Enumerative Approach to the Solution of a     

Multi-Period Orienteering Problem 

verfasst von / submitted by 

Alexander Ruth, BSc 

 

 

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of 

Magister der Sozial- und Wirtschaftswissenschaften (Mag. rer. soc. oec.) 

 

Wien, 2017 / Vienna 2017  

Studienkennzahl lt. Studienblatt / 

degree programme code as it appears on 

the student record sheet: 

 A 066 951 

Studienrichtung  lt. Studienblatt / 

degree programme as it appears on 

the student record sheet: 

   Statistik 

Betreut von / Supervisor: Univ.-Prof. Mag. Dr. Walter Gutjahr 

 





Abstract in English

When dealing with orienteering problems, most people would pick heuris-
tics as their choice. Especially, multi-period orienteering problems with the
following characteristics are considered in this thesis. There are no vehicle
capacity constraints. The demand grows linear over time, can be accommo-
dated completely upon visit and decays exponentially if not visited. There
is a �xed number of time steps and on each time step one tour will be sched-
uled. The tour length limit is constant without bonus for left over length.
There are no time window constraints. Starting and end points are at the
depot.
This thesis depicts the construction of a new algorithm which is able to solve
multi-period orienteering problems exactly and in an e�cient way. This
algorithm consists of two parts, generating candidate tours and computing
the optimal schedule, respectively. One advantage over standard complete
enumeration is the reduction of the number of travelling salesman problems
(TSP) that need to be solved. In a stepwise algorithm, many tours are
discarded by using an easy-to-compute bound and the solving of linear as-
signment problems (LAP). Also, subtours of positive TSPs are discarded.
This also leaves a lot smaller number to work with for the scheduling prob-
lem, which is the second advantage over complete enumeration.
For algorithm tuning multiple options such as the tradeo� between using and
not using the bound or between LAPs and TSPs are considered and the best
methods are determined by runtime analysis. It turned out that using the
bound while using the maximum number of LAPs is the best combination.
As a demonstration, a real-world application example with selected provin-
cial capitals of Austria and Germany is profoundly analyzed.

i



Abstract in German

Üblicherweise werden Orienteering Probleme mithilfe von Heuristiken gelöst.
Im Speziellen werden in dieser Magisterarbeit Multiperioden Orienteering
Probleme mit nachfolgenden charakteristischen Eigenschaften behandelt. Es
gibt keine Kapazitätseinschränkung der Fahrzeuge. Die Nachfrage wächst lin-
ear mit der Zeit, kann bei einem Besuch komplett gedeckt werden und sinkt
exponentiell falls kein Besuch statt�ndet. Es gibt eine vorab festgelegte An-
zahl von Zeitpunkten und für jeden Zeitpunkt ist genau eine Tour geplant.
Für alle Zeitpunkte ist die Längenbeschränkung der Tour konstant und es
gibt keine Rückvergütung falls dieses Limit nicht ausgereizt wird. Es gibt
keine Einschränkung der Besuchszeiten der Knoten. Alle Touren starten und
enden beim Depot.
Diese Magisterarbeit stellt die Konstruktion eines neuen Algorithmus vor, der
dieses spezielle Problem exakt und zeite�zient lösen kann. Der Algorithmus
besteht aus zwei Teilen, wobei zuerst candidate tours ermittelt werden und
dann aus diesen der optimale Zeitplan berechnet wird. Ein Vorteil gegenüber
vollständiger Enumeration ist die niedrigere Anzahl an Travelling Salesman
Problemen (TSP) (deutsch auch "Problem des Handlungsreisenden"), die
gelöst werden müssen, da schrittweise durch eine Schranke und das Lösen
von Linear Assignment Problemen (LAP) (deutsch auch "Lineares Zuord-
nungsproblem") einige der zu testenden Touren ausgeschlossen werden. Auÿer-
dem werden Subtouren von Touren, die die Nebenbedingungen erfüllen, aus-
geschlossen. Daraus ergibt sich die minimale Anzahl von relevanten Touren,
was weiters die Laufzeit für die Berechnung des optimalen Zeitplans im Ver-
gleich zur vollständigen Enumeration drastisch verkürzt.
Das Feintuning, welches daraus bestand zu vergleichen, ob es schneller ist die
Schranke zu benutzen oder wegzulassen oder wegzulassen und zu entscheiden,
ab welchem Zeitpunkt man von LAPs auf TSPs wechseln sollte, stellte sich
heraus, dass die optimale Kombination die Verwendung von Schranke und
maximaler Anzahl an LAPs ist. Als Demonstration des Algorithmus wird ein
Anwendungsbeispiel bearbeitet, dass aus ausgewählten Landeshauptstädten
von Österreich und Deutschland besteht, und analysiert.

ii



Contents

1 Introduction 1

2 Problem Description 3

3 Related Literature 7
3.1 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Exact Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 The Multi-Period Orienteering Problem 18
4.1 Notation and Mathematical Problem Formulation . . . . . . . 18
4.2 Tour Length Distribution . . . . . . . . . . . . . . . . . . . . . 22

5 The Algorithm 26
5.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Finding Candidate Tours . . . . . . . . . . . . . . . . . . . . . 28

5.2.1 Upper Bounds for Number of Nodes . . . . . . . . . . . 32
5.2.2 Evaluation and Elimination . . . . . . . . . . . . . . . 41
5.2.3 Linear Assignment . . . . . . . . . . . . . . . . . . . . 41
5.2.4 Runtime Analysis . . . . . . . . . . . . . . . . . . . . . 45

5.3 Determine Optimal Schedule . . . . . . . . . . . . . . . . . . . 51

6 Application Example 58
6.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3.1 Parameter Sensitivity . . . . . . . . . . . . . . . . . . . 64
6.3.2 Runtimes for more Time Steps . . . . . . . . . . . . . . 72

7 Conclusions 74

Appendix A 80

Appendix B 82

iii



List of Figures

1 Overview Routing Problems . . . . . . . . . . . . . . . . . . . 8
2 Tour length distribution for N=1 . . . . . . . . . . . . . . . . 23
3 Simulated tour length distributions for N = 1, ..., 12 . . . . . . 24
4 Simulated Distribution of Number of Candidate Tours . . . . 30
5 Runtime - Bound vs No Bound 1 . . . . . . . . . . . . . . . . 35
6 Bootstrap - Bound vs No Bound 1 . . . . . . . . . . . . . . . . 37
7 Runtime - Bound vs No Bound 2 . . . . . . . . . . . . . . . . 38
8 Number of TSPs and LAPs - Bound vs No Bound 2 . . . . . . 39
9 Bootstrap - Bound vs No Bound 2 . . . . . . . . . . . . . . . . 40
10 Runtime Comparison for 3 Strategies 1 . . . . . . . . . . . . . 45
11 Runtime Comparison for 3 Strategies 2 . . . . . . . . . . . . . 47
12 Runtime Di�erences . . . . . . . . . . . . . . . . . . . . . . . 48
13 Bootstrap Results . . . . . . . . . . . . . . . . . . . . . . . . . 50
14 Number of Possibilities for Schedule Optimization (T=5) . . . 57
15 Geographical Problem Representation . . . . . . . . . . . . . . 60
16 Problem-Oriented Representation . . . . . . . . . . . . . . . . 61
17 Example Tour 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 63
18 Example Tour 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 63
19 Objective Value in Dependence of C and q 1 . . . . . . . . . . 67
20 Objective Value in Dependence of C and q 2 . . . . . . . . . . 68
21 Bounds for Optimal Objective Value using Convexity . . . . . 71
22 Counter Example - Best Tour . . . . . . . . . . . . . . . . . . 77

iv



List of Tables

1 Problem Abbreviations . . . . . . . . . . . . . . . . . . . . . . 7
2 Branch and Bound ILP Relaxation . . . . . . . . . . . . . . . 14
3 Number of Candidate Tours - Observed and Theoretical Max-

imum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4 Mean Runtime for 3 Strategies . . . . . . . . . . . . . . . . . . 46
5 Selected Statistics of Testing Data . . . . . . . . . . . . . . . . 48
6 Omitted Schedules T=2,3,4 . . . . . . . . . . . . . . . . . . . 54
7 Omitted Schedules T=5 . . . . . . . . . . . . . . . . . . . . . 55
8 City Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9 Application Example Results Summary (q=0.9) . . . . . . . . 62
10 Application Example Results for di�erent values of q . . . . . 65
11 Runtime Predictions . . . . . . . . . . . . . . . . . . . . . . . 72
12 Problems to be solved in under 8 hours . . . . . . . . . . . . . 75
13 Counter Example - Best Tour - Candidate Tours . . . . . . . . 78
14 Counter Example - Best Tour - Optimal Schedules . . . . . . . 78
15 Used Symbols and Variables A-S . . . . . . . . . . . . . . . . 80
16 Used Symbols and Variables T-Z . . . . . . . . . . . . . . . . 81

List of Algorithms

1 Structure of Algorithm . . . . . . . . . . . . . . . . . . . . . . 27
2 Strategy 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3 Strategy 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 Strategy 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



1 Introduction

The classic orienteering problem (OP) was inspired by the orienteering
sport. Competitors have to �nd control points, marked on a map, in a given
area and within a �xed amount of time. As most of the time it won't be
able to visit all control points before time runs out, in addition to �nding the
shortest tour, a selection step is needed to determine the subset of control
points, which will be visited. It is also possible to assign di�erent positive
values (weights) to the control points. In the end the set of visited control
points determines the score and the participant with the highest score wins.

Since the �rst formulation of the orienteering problem (OP) by Tsiligiri-
des (1984) [23], research has mainly focused on �nding approximations for
di�erent kinds of OPs using methods such as variable neighborhood search
(VNS) (Tricoire ea 2010) [22] or ant colony algorithms (ACS, ACO) (Monte-
manni ea 2009) [16]. In this thesis, an exact algorithm for solving a particular
multi-period orienteering problem will be proposed.

Key features of this type of MPOP are

• Demand is a composition of a linear growth over time and an exponen-
tial decay for unful�lled demand.

• There are no vehicular capacity constraints and complete demand can
be satis�ed upon visit.

• The tour length limit is constant for all time steps.

• All node distances are symmetric.

• Starting and end point of each tour is the depot.

The multi-period orienteering problem (MPOP) is an extension for situa-
tions that face OPs repeatedly. They occur in many di�erent situations such
as harvesters, �eld workers, delivery men, garbage truck drivers or tourists
who want to optimize their tours. There is a �xed number of repetitions
(rounds) of OPs but the repetitions are not identical. Node values decrease
if the corresponding node has been visited last round and increase otherwise.
While in the classic OP it is su�cient to look at a tour's score, here it is
also necessary to evaluate its impact on the node values. Greedy algorithms
cannot consider that and should therefore not be used (if the exact solution
is desired).

1



The MPOP is (like all OPs) closely related to the travelling salesman
problem (TSP). Every TSP can be formulated as an MPOP by setting the
number of rounds to 1 and the constraint level to in�nity or su�ciently large,
which makes the TSP a special case of the MPOP. In this manner, the MPOP
inherits the NP-hardness of the TSP.

To provide a reasonable runtime, the proposed algorithm includes mul-
tiple steps to reduce the number of TSPs and enumeration instances. In the
�rst part candidate tours are identi�ed by using statistics of row and col-
umn sums as well as solvers for linear assignment problems while eliminating
subtours of candidate tours. Knowing the complete list of candidate tours
results in a bene�cial reduction of problem complexity. In the second part
schedules are generated, �ltered and then evaluated. The schedule with the
highest score is then returned.

A real-world application example, including the nine provincial capitals
of Austria and Munich as nodes, serves as a performance display to illustrate
the algorithm. Pairwise distances were calculated by using the road distances
of the fastest tour. The MPOP is solved for di�erent constraint levels and
the results are compared.

2



2 Problem Description

Before giving a mathematical formulation of the MPOP, this chapter will
start with an informal introduction to the topic. Generally, the aim is to
�nd a schedule of tours that is optimal for a given setting. As an illustration
example, the problem setting is applied to an agricultural setting. In this
case a company owns �elds at di�erent locations that grow vegetables. The
aim is to optimize the tours of their truck driver, who visits the �elds to
collect the harvest and transport it to the depot for further processing. On
the following pages the di�erent elements of the MPOP and the application
to the illustration example will be described.

The basis of the multi-period orienteering problem are the points of in-
terest. In the context of MPOP they will be denoted as nodes. Typically,
nodes are real locations but they can largely vary in size. For an international
delivery service the nodes will be spread around the whole globe, whereas
in the orienteering sport all nodes will be within a few kilometers. For the
truck driver, the nodes are the locations of the �elds of the company. These
should be near enough so he can start from the depot, visit some of them
and return to the depot within one working day.

One of these nodes has a special status and is called depot. The depot
is the starting and end point of all tours. In the setting of the application
example the depot shall be identi�ed by the term depot. This is the place
where all the picked-up vegetables are transported to. It is also the parking
area for the truck before and after work.

Each pair of nodes is assigned a distance. This distance measures the
cost it takes to travel from one node to another. There are several options on
how to formulate distances. One possibility is to use length. This can either
be the length of the bee line (often not travelable) or the length measured by
an underlying infrastructure such as a road network, which is more realistic
in most cases. Other options are to specify distances by the time or money
it takes to travel from A to B. While time is self-explanatory, money costs
can consist of driver wage, fuel, car toll or tari�, among others. For agricul-
ture, there are multiple options, but assume the limiting quantity is length
speci�ed by street kilometers.

3



The total traveled distance is of course not unbounded. There is a tour
length limit (also called constraint level later) which has the same unit as the
distances. This restriction represents the action scope. People are limited to
the number of hours within a working day, by the amount of money they are
willing to spend or by the maximum distance one can travel within a day.
For the truck driver with distances speci�ed by street kilometers, the limit
will probably be bounded by its fuel tank. Say, this truck has a fuel tank of
1200 liters and a gas mileage of 40 liters/km and refueling is done only at
the depot, because there is an internal gas station with a low price. Thus,
this truck can drive for 300 km before returning to the depot.

Di�erent nodes may be of di�erent importance. So, there is an additional
variable that assigns importance coe�cients to the nodes. These coe�cients
are called weights and exist for all nodes except for the depot. Visiting nodes
with a high weight is more rewarding than visiting those with a lower weight.
Depending on the application, these importance rankings can re�ect demand
for a product within a city, the number of parcels to deliver within a certain
area or in the case of the illustration example the amount of harvest at the
speci�c �eld. There are no capacity constraints for the truck driver, which
means that the loading volume is expected to be su�ciently large to contain
the whole harvest. Analogously, delivery services are assumed to be able to
load all their parcels into their vehicle and product sellers have a produc-
tion that covers the full demand. In most cases, the importance is based
on demand, pro�t, reward or another quantity that is closely related to one
of them. The amount of harvest, for instance, translates into pro�t for the
agricultural company. Therefore, the measure of importance will from now
on be denoted as demand, pro�t or reward, which will be used synonymously.

The total reward is the target quantity and the main preference that
will shape the tour design. It is the benchmark to decide which tour is prof-
itable and which is not. The truck driver prefers a tour that stops at big
�elds with a lot of harvest to pick up over a tour with stops at very small
�elds that do not o�er a lot of harvest.

Until now, the problem described is only the classic orienteering problem.
In addition to this the introduction of time steps leads to the multi-period
orienteering problem. The length of one time step can vary from minutes
to days or even longer time periods, but typically one time step re�ects one
day. Say collecting harvest is done from Monday to Friday with one tour
per day, in that case there are �ve time steps of one day each. The solution
to this problem will �nally o�er a schedule with one tour for each time step

4



(day). There will be one tour scheduled for Monday, one for Tuesday, etc.
and the next week will again start with the Monday tour. These tours can
be di�erent, but they can be identical as well. The speci�c schedule and its
structure depends a lot on the input variables.

In many applications, there is a decrease in reward if the time before
the visit is too long. The demand of a speci�c person for a product might
disappear if a company waits to make an o�er, because this person might
buy at another company. Similarly, in regard to mathematical modeling, is
the case of the vegetable transportation. The vegetables are cropped when
they are ripe and waiting a few days causes a decay in quality. But waiting
can also increase e�ciency because driving to that �eld on the second day
lets the truck driver collect the harvest of two days while having the chance
to visit other �elds on the �rst day instead. The status of a node tells how
pro�table the node is right now, in contrast to the weight of a node, which
tells how pro�table the node is in general. In the model, there are two com-
ponents that in�uence the status of a node. The �rst one is a linear growth
determined by the importance (weight) of the node and the second one is
an exponential decay. The exponential decay is tunable by a decay factor.
On the �eld, the linear growth would mean there is a constant harvest every
day, say one ton of tomatoes. After two days, there are two tons of tomatoes,
but half of it is not fresh, so the pro�t is smaller compared to two tons of
fresh tomatoes. The decay factor can be used to declare the ratio of pro�t
for fresh tomatoes and those of the day before.

The introduction of multiple time steps adds a lot of complexity to this
problem. It is very easy to evaluate the total reward for a single tour if there
are no time steps. However, in the multi-period setting also tours that do
not o�er a high reward can make sense, for example because they are com-
plementary to a good tour. In the real-world application example in chapter
6 it turns out that using east and west tours alternatingly is optimal in many
cases. This clearly is no general proof, but it indicates that tours that com-
plement each other have good long-term properties. Greedy algorithms tend
to �nd tours with good short-term properties and will therefore �nd good
solutions for the classic orienteering problem, but not necessarily for the
MPOP. Hence, an exact algorithm has to consider a higher number of tours
instead of just the one that performs best in the classic OP. Furthermore,
evaluating a schedule takes a lot longer in terms of runtime than evaluating a
single tour. This leads to a problem with high runtime complexity, especially
because the classic OP is already known to be NP-hard.

5



There are several applications for the MPOP such as harvest collection,
already illustrated before, as well as planning tours for various delivery ser-
vices ranging from letters or parcels to home heating fuel, garbage collection,
traveling salesmen or tourists. These typically use heuristics to deal with
this kind of problems, which generally �nd good but not necessarily optimal
solutions. The aim of this thesis is to �nd a good tradeo� between runtime
and solution quality by retaining the optimal solution and providing a run-
time that is considerably lower than complete enumeration. The presented
algorithm moreover provides a �exible structure with room for adaptations.
It is possible to change the underlying model by introducing a minimum/-
maximum number of nodes per tour or change the growth/decay model to
practically any model with small adjustments in the programming code and
without changing the structure of the algorithm.

6



3 Related Literature

Current research provides a great variety of solution approaches to the
classic orienteering problem and various extensions. In the time from the
�rst mentioning in 1984 by Tsiligirides [23] until now, many people devel-
oped algorithms to deal with this NP-hard problem. The complexity is very
important in this regard because it allows exact procedures for a limited
problem size only. Therefore, most approaches are heuristics and focus on
�nding good solutions within a short amount of time.

There are several related routing problems that are not OPs per se but
should be mentioned in this context. Due to its young age compared to TSP
and VRP (Vehicle Routing Problem), some algorithms that turned out to
perform well for TSP and VRP, were adapted to the OP. A good example
is the idea to partition the map of nodes into sectors and construct tours
within sectors �rst before connecting them. This strategy was �rst used in
the context of VRP by Wren ea (1972) [24] and was later applied to OP by
Tsiligirides (1984) [23].

Table 1: Problem Abbreviations

OP Orienteering Problem

TOP Team Orienteering Problem

MPOP Multi-Period Orienteering Problem

TSP Traveling Salesman Problem

STSP Selective Traveling Salesman Problem

TSSP+1 Traveling Salesman Subtour Problem with 1 additional constraint

VRP Vehicle Routing Problem

SVRP Selective Vehicle Routing Problem

VRPTW Vehicle Routing Problem with Time Windows

SVRPTW Selective Vehicle Routing Problem with Time Windows

7



Figure 1: Overview Routing Problems

The arrows are pointing from the general problem to the special case.
The rectangles indicate common properties of the various problem types.

green: Every node is required to be visited exactly once.
red: Multiple tours are allowed but only one visit per node overall.
blue: Multiple tours are allowed and a node can be included in several of them.

Table 1 and Figure 1 give a brief overview of the di�erent routing prob-
lems. The graph is not exhaustive but covers the most relevant types. Recall
that the TSP minimizes tour length and requires all nodes to be visited and
the OP maximizes the number of visited nodes (or the sum of weights) while
restricting the total tour length. VRP and TOP are the straightforward ex-
tensions to multiple vehicles. It should be noted that the objective for the
VRP can have several options, but usually is minimizing the travel cost, typ-
ically consisting of a linear combination of the total traveled distance and the
number of vehicles used. The MPOP has some parallels with the TOP, both
maximizing the total pro�t by scheduling multiple tours. The di�erence is
that the MPOP allows nodes to appear in various tours, whereas the TOP
limits each node to one visit in total at most. The idea behind this is that it
can make sense to visit a node every day (MPOP), however it is unintuitive

8



to visit a node on one day with several vehicles (TOP). The introduction of
time windows (TW) sets time frames for every node during which it is avail-
able and can theoretically by applied to any routing problem. TSSP+1 is a
class of problems, which can be generated by adding one constraint to the
TSP and optionally removing the constraint to mandatory visiting all nodes.
As used by Pillai (1992) [17], it is equivalent to the OP. Furthermore, there
are variants for each type of routing problem with symmetric and asymmetric
distances as well as start and end points coinciding or not, which are minor
changes and do not need an extra notation. If not stated otherwise, the word
depot will denote starting and end point at the same physical location.

The approaches for dealing with di�erent kind of OPs mostly combine
several algorithms in a speci�c order or in a loop to achieve good results.
In the following sections, heuristics and exact algorithms will be considered
separately. Nonetheless, heuristics are sometimes applied in exact algorithms
to generate bounds or initial tours, which are then improved.

3.1 Heuristics

Cheapest insertion and nearest neighbor are two similar algorithms that
can construct feasible tours very fast. They were publicized by Rosenkrantz
ea (1977) [19] to �nd solutions for the TSP. Both start with a single node
(the depot) and then add more nodes. Cheapest insertion views the current
state as tour (as a cycle) and can add nodes anywhere. Nearest neighbor
views the current state as a path (from A to B) and can only add points
before the �rst node or after the last one. Which nodes are added is chosen
by a greedy criterion, which originally consisted only of the additional length
that the inclusion of that node would add to the total length (in the context
of TSP). For the OP Profit

Add. Length
serves as criterion. Points are added until the

inclusion of another point would violate the tour length limit. For nearest
neighbor, the path has to be converted into a feasible tour by connecting the
�rst and last node with the corresponding edge. This edge always has to
be considered, when evaluating the feasibility of a state. According to La-
porte ea (1990) [14] cheapest insertion can be done in O(n2 log n) and nearest
neighbor in O(n2) time.

9



Another heuristic is 2-opt proposed by Croes (1958) [5]. This algorithm
can improve an existing tour by rearranging the order of visited nodes. Two
nodes are selected and the nodes between them are reversed in order. For
example the tour 01234567890 with selected nodes 3 and 8 will transform
into 01237654890. Depending on the size of the problem and available time
all possible swaps or a random sample are tested. At this point, the depot
needs to be protected from swaps. If one of the generated swaps turned out
to decrease the total tour length, the corresponding tour is selected as the
new benchmark. The algorithm stops, if the tour cannot be improved by any
2-opt swaps. The main idea of 2-opt is to repair paths the cross themselves.
This approach can be generalized to k-opt, o�ering even more swap possi-
bilities increasing both runtime and solution quality. Tsiligirides (1984) [23]
Golden ea (1987) [7] and Ramesh ea (1991) [18] use 2-opt and/or 3-opt to
improve tours in their OP heuristics.

Removal and insertion is another strategy to improve current tours. This
is more of a general idea than a �xed algorithm. If a greedy algorithm such as
cheapest insertion or nearest neighbor cannot add any more nodes, it can be
bene�cial to remove an existing node and try adding another one in return.
A newly included point has to lead to a feasible solution. Typically, mul-
tiple points satisfy this constraint and the necessary selection can be done
deterministically or randomly. Many criteria use scores with di�erent com-
ponents, which is often referred to as desirability. Natural components are
its pro�t, additional distance for including, distance to its neighbors in the
current tour or distance to depot. Golden ea (1988) [8] and Sokkappa (1990)
[20] use distance to the center of gravity as one component and a learning
factor, which stores information about previously removed points similar to
tabu search. Keller (1989) [12] decided to allow remove/insert whole clusters
of points instead of trading one for one.

Tabu search was invented by Glover (1986) [6], originally to improve inte-
ger linear programming (ILP). Conveniently, tabu search is a metaheuristic,
meaning it can theoretically be applied to any optimization problem. This
approach needs an initial solution, of which a neighborhood of similar solu-
tions is computed. Of this neighborhood the best solution is selected (even
if it is worse than the current solution). The di�erence of the old and new
solution will be added to the tabu list, meaning that it cannot be reversed for
some amount of time. For example, if the new solution was generated from
the old one by removing node i, then node i cannot be added for the next
few iterations. The process is iterated until a stopping criterion is met. The
tabu list prevents local search algorithms from producing cycles like adding

10



and removing the same node over and over again. Of course, the objective
value of the solutions has to be tracked and the best solution until now has
to be stored separately because even if the best solution is found (but not
identi�ed as such), it will be discarded for another solution in the next it-
eration and will not be met again soon due to the tabu criterion. If the
algorithm is stopped, the solution with highest objective value is selected as
the �nal solution. Tang ea (2005) [21] implemented tabu search for the TOP.
He generates an initial set of tours by unspeci�ed heuristics. The neighbor-
hood of a given set of tours is computed by randomly adding a node to one
of the tours or randomly selecting a random number of points and replace
them by others. At this stage infeasible solutions are explicitly allowed, but
penalized for exceeding the length limit. The distribution of the number
of removed points changes during the tabu search producing small or large
neighborhoods to allow inspecting the near neighborhood precisely or escap-
ing a local optimum, respectively. The tabu search terminates, if the current
best solution is not updated for a selectable amount of iterations.

Limited discrepancy search (LDS) was introduced by Harvey ea (1995)
[11] to search for feasible solutions within decision trees in cases were feasi-
ble solutions might be rare in the total search space. The idea is that the
solutions produced by heuristics often look similar to the solutions produced
by an exact algorithm in terms of decision paths. Therefore, once a solution
(possibly infeasible or suboptimal) is found by a heuristic, it makes sense
to search similar decision paths. For two decision paths, each distinct deci-
sion counts as one discrepancy and all decision paths that have less than a
�xed number of discrepancies is considered the neighborhood, which is then
inspected for better solutions. In the context of routing problems, the deci-
sions are usually binary and distinguish if a speci�c edge or node is included
or excluded from the tour. This approach works well with methods that
follow a tree structure e.g. branch and bound.

Chao ea (1996) [4] invented a powerful heuristic for the OP that was
able to outperform six other common heuristics at that time. It was tested
on 49 benchmark problems suggested by Tsiligirides (1984) [23] and Chao's
algorithm produced total scores that were not beaten by any other algorithm
on any of the problem sets but conversely beat every algorithm at least on
one problem instance. The benchmark problems assumed starting and end
point at di�erent physical locations, which technically requires searching for
a path instead of a tour, but that is only a small detail. First, paths are
constructed by using cheapest insertion with additional length (without re-
specting pro�t) as insertion criterion until every node is visited by exactly

11



one path. The path with the highest score is selected as the current solution.
Then exchanges of one point each of the current path and an arbitrary other
path are evaluated and the exchange the produces the highest feasible score
for any path is selected from all exchanges. The insertion is again done with
the cheapest insertion method. Should the other path become infeasible by
adding the node, the node will create a new path instead. After each ex-
change the paths are evaluated and the one with highest score is selected as
the current path. If no exchange results in an increase of the current score,
small decreases in score are allowed too. The best feasible path that occurred
in this process is called record. The next step checks for each node, if moving
it feasibly from its present path to any other could raise the record score or
lies at least slightly below it. The standard parametrization uses 90% of the
record value as a threshold. In case it does, the move is performed, otherwise
the node remains on its present path. Moreover, the current path is improved
by running 2-opt method and subsequently trying to add points from other
paths if possible (with respect to tour length limit). The current path is then
removed the k least e�cient nodes in terms of the Profit

Add. Length
criterion, which

are added to other paths or creating new ones. The state of paths serves as
a new initial solution and the steps are iterated with k increasing from 1 to
K every iteration. On the 49 benchmark instances, this algorithm found a
solution with the same score as Pillai's (1992) [17] exact algorithm, which
was able to solve 47 problem instances within the 2 hours time limit (per
instance). Another advantage of Chao's algorithm is its adaptability to the
TOP with only small changes. In contrast to other algorithms, the present
state of paths consists only of disjoint feasible paths which matches with
the constraints of the TOP.

12



3.2 Exact Algorithms

Integer linear programming (ILP) is a popular technique to solve a spe-
cial class of optimization problems. For this method it is important that the
problem can be formulated by using a linear objective function, equalities
and inequalities that are linear and integer constraints for some variables.
All other constraints are not allowed. Sometimes constraints are not linear,
but can be reformulated in a linear way. For example x2 < 1 can be substi-
tuted by x < 1 and −1 < x, which leads to the same feasible set of values for
x. If there are no integer constraints, ILP transforms into a linear program-
ming (LP), which can be solved faster. In fact, ILP is NP-hard, while LP
is not. LPs are usually tackled by using variants of the simplex algorithm
such as the LP solver CPLEX. The process of removing integer constraints
(or other constraints) is called relaxation. Solving the relaxed problem can
yield an integral solution, which makes it the optimal solution to the original
problem, or to a non-integral solution, which makes it an upper bound to
the optimal objective value. In the �rst case the problem is solved, while in
the second case the search space has to be separated to avoid the non-integer
values. The classic strategy is using branch and bound or a variant of it
(such as branch and cut) for this purpose. Branching approaches will be
explained separately. The main advantage of ILPs is that LPs can be solved
very fast and in case that all constraints have integer coe�cients, there is a
good chance that the ILP is solved after the �rst LP, see Boussier (2007) [3].
A disadvantage is that the linear formulation of a problem tends to require a
high number of variables and constraints. For this reason, further relaxations
(like dismissing subtour constraints) or procedures to reduce the search space
(similar to candidate tour identi�cation in section 5.2) are regularly used to
reduce problem size.

Branch and bound is a strategy to divide the search space subsequently
into smaller elements. At �rst there is branching, meaning to split the search
space into multiple (typically two) spaces forming a partition. In terms of
routing, one split could be done creating one branch using node i in the tour
and another branch excluding node i completely from the problem. Another
way would be to split on using a speci�c edge. After branching, upper bounds
(wlog assuming a maximization problem from now on) are computed for ev-
ery branch. If there already exist feasible solutions, for example created by
a heuristic, as a product of LP solving or because the branch only includes
one solution, then it serves as a benchmark and lower bound for the optimal
solution. Consequently, all branches with an upper bound, that lies below
the benchmark value, are terminated. All remaining branches are again split

13



into subbranches and bounds are computed. When branching continues, the
search spaces get smaller, the bounds tend to get tighter and are hence likely
to be either terminated or serve as a new benchmark value. Table 2 illus-
trates the process of combining ILP solving with branch and bound. It can
be seen, that even though the relaxation is a simpli�cation of the original
problem, the split replaces the integer constraint for the corresponding edge.
Noticeable, the edge or node on which to split is not determined randomly,
but strategically. In the case of LP, the split is done on an edge or node,
that is traveled or visited by a fractional number of vehicles in the current
solution. So the variable that violates the integer constraint is chosen to be
the branching variable.

Table 2: Branch and Bound ILP Relaxation

Original Problem (ILP) Xij ∈ {0, 1}
Relaxed Problem (LP) 0 ≤ Xij ≤ 1

Split on Xij Xij = 0 Xij = 1

For explanation of the Xij see section 4.2.

Branch and cut is an extension of branch and bound. In the �rst step,
the relaxed LP is solved, but instead of branching immediately, the LP is
enhanced by a cutting-plane method. The aim is to �nd a cutting plane
(represented by a linear inequality), which separates the non-integral solu-
tion of the LP, from all integer feasible solutions. In case such cutting planes
exist, they are included in the relaxed LP as new constraints and the LP
is solved again. Otherwise, a branching step is performed. All occurring
non-integral solutions serve as upper bounds for their branch and all occur-
ring integral solutions serve as lower bounds to cut o� branches of the tree.
Branch and bound and cutting planes combined usually outperforms both
individual algorithms due to a good synergy. Cutting planes accelerates the
branch and bound tree by o�ering tighter bounds on the LPs, which allows
to cut o� suboptimal branches earlier. Conversely, branch and bound divides
the search space, which is bene�cial for �nding more cutting planes. This
method is applied in Pillai's (1992) [17] algorithm.

14



Another modi�cation of branch and bound is branch and price. Like
branch and cut it is speci�cally designed to solve ILPs. In some optimization
problems, especially routing problems, ILPs can contain a lot of columns,
but typically many of them are non-basic, meaning they have a value of zero
and do not contribute to the objective function. Hence, many columns are
not necessary in the ILP design, but it is unknown which columns are im-
portant and which are not, straight away. In this approach, the strategy is
to start with a very small set of column and add new columns gradually,
if and only if they have the potential to contribute to the objective func-
tion. The optimization task is divided into two parts. The master problem
denotes the original problem formulated as ILP and includes all columns.
After removing all but some elementary columns, it is called restricted mas-
ter problem. The second part is called subproblem or pricing and consists
of �nding additional columns for the restricted master problem. Identifying
potentially useful columns can be done by evaluating a simple expression
containing the dual variables of the current LP solution and the coe�cient of
the objective function. The algorithm starts with the small-sized restricted
master problem and solves it. All LP solves are done for the relaxed problem
discarding integer constraints. The subproblem adds columns based on the
LP solution and solves the LP again until no additional columns are found.
If the solution at this stage is integral, the optimum is found. Otherwise,
a branching step is executed to enforce integrality of one of the non-integer
variables and provide a bound. A branch with an upper bound lower than a
feasible solution anywhere in the tree is terminated. The process of column
generation, branch and bound is iterated until all branches are terminated
or provide a feasible solution.

Boussier ea (2007) [3] apply the concept of branch and price to treat TOP
and SVRPTW the following way. Their work is an enhancement to Gueguen
(1999) [9]. The master problem consists of an ILP with one column corre-
sponding to one tour and one row corresponding to high level constraints
such as the number of vehicles. The restricted master problem consists only
of the elemental columns, which are tours that visit only one node (besides
depot). The subproblem searches for pro�table tours and checks feasibility of
the potential columns. Feasibility requirements at this level include the tour
length limit, subtour constraints and optionally time windows as well as the
very basic constraints of visiting the depot and not visiting a node more than
once per tour. Checking feasibility is done by a dynamic programming ap-
proach based on the Bellman-Ford algorithm. The Bellman-Ford algorithm
(Bellman (1958) [2]) is an exact method that tries out di�erent paths and
updates the shortest path to each node every time it �nds a better path or

15



subpath using a labeling system. The solution includes the shortest paths
from one starting node (depot) to every single node. If a tour turns out to
be feasible, it is added as a column to the restricted master problem. The
branching to avoid non-integer solutions distinguishes multiple cases.
If a node exists, such that this node is visited by a fractional number of
vehicles, then one branch excludes this node completely, whereas the other
branch enforces the node to be visited. These new node constraints are added
to the restricted master problems within the corresponding branches and re-
sult in column deletions in case of excluded nodes.
If all nodes are integral, but some edges are not, then one non-integral edge
is selected as a splitting criterion. If one of the adjacent nodes is enforced (by
a previous branch split on a node), then new split generates two branches,
one enforcing the edge and one excluding it.
If all nodes are integral, some edges are not and the adjacent nodes of the
chosen edge are not enforced, three branches are generated. The �rst branch
excludes the starting node of the edge (resulting in excluding the edge as
well). The second branch enforces the starting node and the edge. The third
branch enforces the starting node, but excludes the edge. Contrary to node
constraints, edge constraints are added to the subproblem level.

Dynamic programming approaches try to reduce computation time by
storing previous results and recalling them instead of solving a subproblem
repeatedly. For suitable problems, dynamic programming outperforms other
algorithms, if the provided memory space is su�ciently large. For instance,
�nding the 100th Fibonacci number is hard, if no previous numbers except
for the �rst two are known. However it is very easy, if the 98th and 99th
Fibonacci number are already stored in the memory. The possibilities for
dynamic programming are numerous and often diverse so they cannot be de-
scribed as a standard algorithm. Dynamic programming approaches do have
in common that they memorize previous results, have some kind of loop or
hierarchical structure and try to use previous results to solve the current
problem.

16



The algorithm proposed in this thesis is, as mentioned before, an exact
method speci�cally designed for the MPOP. It applies a separation of the
main problem (�nding the optimal schedule) and a subproblem (identifying
candidate tours), which is very important when dealing with multiple time
steps or vehicles. Unlike many known approaches it does not use the struc-
ture of ILP in combination with a branch and bound variant for the main
problem. At the level of solving the subproblem it performs a top-down
dynamic programming approach that calls external procedures. Tours are
treated in the order of the number of contained nodes and each tour runs the
stages of a bound calculated from the distance matrix, a linear assignment
solver and �nally the TSP solver Concorde (Applegate 2002 [1]), which is
based on branch and cut. The advantages of this approach are that once the
subproblem process is completed it needs not to be called again and many
tours do not even have to be considered once a tour containing it as a sub-
tour was found to be feasible. Furthermore, the number of candidate tours is
very small compared to the number of all theoretically possible tours. This
process is very similar to column generation (pricing) in the branch and price
algorithm. Optimizing the schedule is done using classic enumeration with
an additional technique to reduce the number of possibilities that have to be
checked. While some subroutines are similar to other approaches, the speci�c
combination of bound, LAP and TSP solving in combination with subtour
discarding is new and turns out to be e�cient. The enumeration process is
probably not competitive but could be replaced by linear programming.

17



4 The Multi-Period Orienteering Problem

4.1 Notation and Mathematical Problem Formulation

The basic problem in the MPOP is to �nd a T-tuple of tours that maxi-
mizes the total collected pro�t, while satisfying some constraints. To de�ne
the MPOP consider a set of nodes {0, 1, ..., N}, where 0 is the depot, which is
the starting and end point for all tours. Depending on the application these
nodes represent cities, �elds, houses or other places of interest. The depot is
the origin in this setting which can be home loaction, o�ce or parking area.
Furthermore, there is a �nite number of time steps t = 1, ..., T . These time
steps can be days, hours, minutes, etc. If a person travels from Monday to
Friday with one tour per day, then T would be equal to 5. Let wi denote the
weight of node i measuring the pro�tability of a node. Nodes with a higher
weight are more rewarding. In a network of cities, a bigger city might have
a higher weight to outline a higher number of potential customers. For a
farmer, a high-weight node would represent a �eld with rich harvest. Weight
is not the only variable with in�uence on the value of a node at a certain
time step. zti is a non-negative, time-dependent variable describing the value
(pro�t upon visit) of node i and changing its value baased on the time since
the last visit scaled by the decay factor q. The base model is a linear growth
over time. This growth is proportional to the weight of the node. Addition-
ally, there is an exponential decay. Here, q is the ratio of demand of time
step t and t + 1 before applying linear growth for nodes that are not vis-
ited at time step t. The decay factor q can take values in [0, 1], where q = 1
would mean that there is no decay and the growth is exactly linear and q = 0
would mean that everything unvisited decays instantly. The latter case will
transform the MPOP into a classic OP since it the decay will reset all node
values to the starting values and lead to the same problem in every time step.
In the application example q = 0.9 will be used, so 90% of the uncollected
value can still be collected at the next time step. Each pair of nodes has a
�xed, symmetric distance dij >= 0. (Note, that distances are not required
to satisfy the triangle inequality.) In every time step, the total tour length is
restricted to be shorter than its constraint level C. The variables dij and C
always share the same dimensional unit, which can be length, time or money
for instance. There is no refund for unused resources and they cannot be
carried over to the next time step.

18



The variables X t
ij are indicators being 1 if node j follows directly after i

in time step t and 0 otherwise. These variables do not play a major role in
the algorithm development but they are key to precise problem formulation
as they are the link between nodes and distances on the one side and actual
tours on the other side. For simpli�cation there are the additional variables
yti indicating if node i is visited in time step t. These help to evaluate the total
gained pro�t of a tour. For subtour elimination the auxiliary variables uti will
be used. They specify the positions of the corresponding nodes within the
tour for nodes included and give no information about (and no constraints
to) nodes not included in the tour.

X t
ij =

{
1 if j follows immediately after i in time step t

0 otherwise

for i = 0, ..., N ; j = 0, ..., N ; t = 1, ..., T

(1)

The variables X t
ij exist for all pairs of nodes (including the depot) for all

time steps. Every segment (travel from one node to the consecutive one) of
any possible tour at any time step is represented by one yti . They are the
link from nodes to tours and their properties such as length, connectivity
and avoidance of cycles.

yti =

{
1 i is visited in time step t

0 otherwise

for i = 1, ..., N ; t = 1, ..., T

(2)

All information of the yti is already included in the X
t
ij. Still the introduc-

tion of these new variables helps to construct a more intuitive formulation
of the objective function and the variables zti . Unlike the X

t
ij, the y

t
i are not

de�ned for the depot (node 0), since it is included in every tour and does not
contribute to the objective function.

T∑
t=1

N∑
i=1

wi · zti · yti → max (3)

The objective is to maximize the total reward. Depending on the appli-
cation this can be pro�t/demand, harvest or collected/delivered goods. For
each time step the tour value equals the product of node weight and current

19



state of growth and decay. In the example of a farmer the node weight rep-
resents the amount of fresh harvest per day and growth and decay measures
the accumulation of harvest over the days since the last visit and the average
quality (freshness). Visiting the �eld after 5 days will be more rewarding then
on the �rst day (because the amount of harvest is bigger), but it will be less
rewarding then visiting everyday (because 4/5 of the harvest is not fresh).
The exact values heavily depend on the choice of q. A small value for q (near
0) will mean a fast decay and a strong incentive to visit important nodes very
frequently, whereas a high value for q (near 1) will mean a slow decay with
an incentive to visit many di�erent nodes. The total reward amounts to the
sum of the tour values over all time steps. There is no bonus for remaining
resources such as making full use out of the tour length constraints.

zti =

{
1 + q · zt−1i yt−1i = 0

1 yt−1i = 1 or t = 1

for i = 1, ..., N ; t = 1, ..., T

(4)

As mentioned before, the variables zti serve as a measure to assess the
current state of a node. It evaluates the accumulation of reward and its decay
and can be interpreted as a multiplier of how much more reward the node
o�ers now compared to the �rst time step. The advantage of a growth/decay
process over a basic linear accumulation process is that it allows a more
realistic modeling for the typical routing problems. Some examples for decay
are harvest losing quality when not picked up at the right time or potential
customers not buying your product or buying from other competitors if there
is no o�er in time. Mathematically the zti follow a geometric series (in t) and
therefore are monotonically increasing and bounded by 1

1−q as long as the
corresponding node is not visited given that 0 < q < 1. Upon visit the node
is reset to its starting value (1).

N∑
j=0

X t
0j =

N∑
i=0

X t
i0 = 1 for t = 1, ..., T (5)

Equation (5) makes sure that the tours all start and end at the depot
(node 0). The �rst part of the equation represents the number of nodes vis-
ited immediately after the depot. The second part represents the number of
nodes visited immediately before the depot. For every tour at every time step
these have to be equal to 1, otherwise tours excluding the depot were feasible.
Theoretically, it would be su�cient to satisfy ≥ 1 in (5) because visiting the

20



depot more than once would not be pro�table. In this case = 1 is de�nitely
the better choice to make the equation more intuitive and clear, but for lin-
ear programming it is typically faster to use inequalities instead of equalities.

ytk =
N∑
i=0

X t
ik

(6a)
=

N∑
j=0

X t
kj

(6b)

≤ 1 for k = 1, ..., N ; t = 1, ..., T (6)

Unlike the depot, other nodes do not necessarily have to be included in
all tours, but it is important to restrict visits to one per node per time step.
The �rst equality sign is simply another form of rewriting the de�nition of
the yti . (6a) ensures that the path is connected and there are no dead ends.
When viewing the X t

ij as edges on the graph of all nodes, there has to be
an outgoing edge if and only if there is an incoming edge. (6b) prohibits
multiple visits of the same node within the same time step.

N∑
i=0

N∑
j=0

dij ·X t
ij ≤ C for t = 1, ..., T (7)

(7) secures that the tours do not exceed the prescribed length limit. For
every time step this sum runs over all distances, e�ctively suming up only
the ones that are actually travelled (X t

ij = 1) and ignoring the other ones
(X t

ij = 0). (7) also determines that the tour length limits for di�erent time
steps are independent, especially the unused distance resources cannot be
carried over to the next time step.

1 ≤ uti ≤ N for i = 1, ..., N ; t = 1, ..., T (8)

uti − utj + 1 ≤ N(1−X t
ij) for i = 1, ..., N ; j = 1, ..., N ; t = 1, ..., T (9)

The combination of (8) and (9) eliminates subtours as proven by Miller et
al. [15]. The variables uti determine the position of the corresponding nodes
within the tour in time step t. The positions range from 1 to a maximum of
N as declared by (8). For a node i not included in the tour all X t

ij = 0 so
(9) simpli�es to uti − utj ≤ N − 1, which is trivially satis�ed for all j if (8)

21



holds true. For a node i' indeed included in the tour there exists one j' such
that X t

i′j′ = 1. In this case (9) simpli�es to uti′ ≤ utj′ − 1. So, if one part of
the tour travels from i' to j' then it follows that the position of i' within the
tour is at least 1 point smaller than the position of j'. If i' should be the last
node of the tour before visiting the depot, then it is necessary to swap the
roles of i' and j'. This works unless i' is the only node visited on this tour,
but in this case subtours cannot exist. The values of the variables uti are not
of particular interest, they are only used in (8) and (9) to prevent subtours.

(3)-(9) can be seen as a generalization of the problem formulation by Gu-
nawan et al. [10] to multiple time steps.

The occurring variables are taking values in di�erent sets.

X t
ij ∈ {0, 1} for i = 0, ..., N ; j = 0, ..., N ; t = 1, ..., T

yti ∈ {0, 1} for i = 1, ..., N ; t = 1, ..., T

zti ∈
{
1, 1 + q, 1 + q + q2, . . . ,

T−1∑
k=0

qk
}
for i = 1, ..., N ; t = 1, ..., T

wi ∈ R+ for i = 1, ..., N

uti ∈ [1;N ] ∩ R for i = 1, ..., N ; t = 1, ..., T

(10)

4.2 Tour Length Distribution

When dealing with problems with tour length restrictions, it is always a
good idea to have a look at the actual distribution of the tour length. For
the sake of simplicity, assume that problem instances are generated by N iid
uniformly distributed nodes in a square and the Euclidean distance serves as
a distance measure. The interesting quantity is the distribution of the short-
est tour (TSP solution) that visits all nodes and satis�es (5)-(9) for T = 1.
While these distributions will have a rather complicated form, a simple ex-
ample will be used �rst.

22



Consider a unit square with the depot being located at the center of the
square. The simplest case is N = 1, which means there is one additional
node. This node is assumed to be uniformly distributed on the unit square.
The total tour length of the tour (0, 1, 0) is given by d01 + d10 being equal
to twice the Euclidean distance of the nodes. Points with same Euclidean
distance to a reference point always depict a circle, but for radii greater than
1/2 since parts of their circle lines lie outside of the unit square. This behavior
is illustrated in Figure 2.

Figure 2: Tour length distribution for N=1

(a): Isolines of radii 0.25 (green), 0.5 (red), 0.6 (blue)
(b): Density at corresponding tour length values 0.5 (green), 1 (red) and 1.2
(blue)

23



The key to �nding a closed-form expression for the density is calculating
the ratio of the circle line that lies within the unit square. After using the
Pythagorean theorem and the de�nition of cosine the formula can be ob-
served. In the following formula, L denotes the tour length.

f(L) =


L · π

2
for 0 ≤ L ≤ 1

L · arccos
(

2
√
L2−1
L2

)
for 1 < L ≤

√
2

0 otherwise

(11)

For N > 1 the problem gets very complicated and therefore densities are
estimated by using Concorde algorithm (TSP solver) and kernel densities
on simulated data. The results are visualized in Figure 3.

Figure 3: Simulated tour length distributions for N = 1, ..., 12

y-axis: Density
x-axis: Tour Length
(a)-(l) correspond to N=1,...,12

24



As seen in (11) the distribution of tour length for a centered base with
a single node is already quite complicated and even more complicated for a
higher number of nodes N. Luckily, these distributions seem to converge to a
normal distribution very fast. That makes approximating the distributions,
even without knowing their exact formulas, easy. Tour length distributions
can be used to classify di�erent constraint levels into groups for �xed as-
sumption on number and distribution of nodes using the quantiles of the
distribution.

25



5 The Algorithm

5.1 Structure

Roughly summarized, the algorithm uses the steps described in the fol-
lowing sections to identify candidate tours �rst in order to reduce the runtime
complexity. It then provides the optimal schedule which is a T-tuple of in-
dividual (feasible) tours for each time step. As input it receives the distance
matrix D, tour length limit C, the number of time steps T , a weight vector
to re�ect the importance of the respective nodes and the decay factor q.

To be more precise, the task is �nding the T-tuple of tours that maxi-
mizes our objective function (e.g. gaining the most pro�t from visiting nodes)
under the constraint that each of the T tours must be feasible. In the subsec-
tion "Finding Candidate Tours", which describes part one of the algorithm,
the feasible tours get separated from the infeasible tours and within this set
of feasible tours only the Pareto-optimal tours (in this thesis called candi-
date tours) are taken into consideration. This results in a list of (candidate)
tours. In part two, which is explained in the subsection "Determine Opti-
mal Schedule", all possible combinations of drawing T tours from this list
with replacement are generated. Some of them can be discarded due to their
structure that will prevent them from being optimal. The remaining T-tuples
of tours are evaluated and the best one is chosen.

The following pseudo code describes the structure of the algorithm while
being unspeci�c in when to switch from one sub procedure to the next one.
This will depend on the choice of strategy. In section 5.2.3 these strategies
and will be explained in detail including their speci�c pseudo code variant.

26



Algorithm 1 Structure of Algorithm
1: procedure Finding Candidate Tours (Part 1)
2: Input: Distance Matrix D, Tour Length Limit C
3: Compute Bound from subsection 5.2.1
4: NVmax ← computedbound
5: k← NVmax

6: candidate.tours← empty list
7: potential.candidate.tours← empty list
8:

9: LAP Solving
10: Generate all k-tuples of nodes, check the LAP solution and add to

potential.candidate.tours if it satis�es LAPsol ≤ C.
11: k ← k − 1
12:

13: Evaluate Potential Candidates
14: Solve TSP for each tour of potential.candidate.tours and add to

candidate.tours if it satis�es TSPsol ≤ C.
15:

16: TSP Solving
17: Generate all k-tuples of nodes, discard all subsets of tours of

candidate.tours check the TSP solution and add to candidate.tours if
it satis�es TSPsol ≤ C.

18: k ← k − 1

19:

20: procedure Finding Optimal Schedule (Part 2)
21: Input: Vector of Weights w, Number of Time Points T,

candidate.tours
22: Enumeration
23: Generate all T-tuples of tours by drawing with replacement from

candidate.tours .
24: Discard unpromising tours.
25: Evaluation
26: Evaluate all remaining T-tuples of tours and return the best one.

27



5.2 Finding Candidate Tours

In order to identify candidate tours two properties will be used:

1. A candidate tour must be feasible and optimal (TSP solution)
for a given set of visited nodes.

2. Subtours of candidate tours cannot be candidate tours.

In this context, a subtour is a tour such that the set of visited nodes is a
subset of the set of visited nodes of the original tour. Furthermore, the set of
visited nodes of a candidate tour will be called candidate set. To illustrate the
second condition, consider a subtour of a candidate tour. This tour would in
any case be outperformed by its supertour. The supertour is a candidate tour
and therefore feasible. By this result the subtour should never be used and
can be discarded. These requirements reduce the set of candidate tours to
the smallest size possible without losing tours that could be part of the opti-
mal solution. Nevertheless, the number of candidate tours can get very large.

The theoretical maximum of candidate sets is

nmax =


(
N
N/2

)
if N is even(

N
(N−1)/2

)
if N is odd

(12)

To show that this number is identical to the theoretical maximum of
candidate tours, it is necessary to �nd a bijective function that maps the set
of candidate tours onto the set of candidate sets. Suppose every candidate
tour is mapped onto its own candidate set. This function is clearly surjective
since every candidate set has at least one candidate tour that maps onto
it. If the TSP solution for all candidate sets is unique, then the mapping
is also injective. For candidate sets with more than one optimal tour, the
candidate tour can be chosen arbitrarily from the set of TSP solutions for
this candidate set. Therefore, (12) also describes the theoretical maximum
of candidate tours.

28



The bound mentioned in (12) holds for arbitrary distance measures. This
bound is tight for problem instances that use the following discrete distance

measure with C
!
= N/2 as tour length limit.

dij =

{
1 for i 6= j

0 for i = j
(13)

It is not clear, if this bound is tight for all N in the setting of section
4.2 with nodes in a plane and Euclidean distance. There probably exists
a narrower bound, because examples like the distance matrix generated by
(13) cannot be constructed for Euclidean distances. At least not for �nite
dimensional Euclidean spaces with N su�ciently large.

Figure 4 and Table 3 are depicting results of simulations to approxi-
mate the distribution candidate tours for given N (from 1 to 12) and C (10
equidistant constraint levels, chosen to be representative depending on N).
Data points were sampled from a uniform distribution over a unit square
and di�erent constraint levels. Each combination of N and C was sampled
10 times while counting the number of candidate tours for every iteration.
The total number of analyzed datasets is 1200 = 12 · 10 · 10.

29



Figure 4: Simulated Distribution of Number of Candidate Tours

y-axis: Number of Candidate Tours
x-axis: Constraint Level
(a)-(l) correspond to N=1,...,12
colors: observed minimum (red), 0.25 quantile (yellow), median (turquoise),
0.75 quantile (blue) and observed maximum (purple)

Figure 4 shows that the isolines (for �xed percentile) tend to look like a
normal distribution for increasing N. These distributions are relevant for
predictions of runtime since the number of candidate tours is the most
important variable in this regard. A good way to use this, could be de-
signing a simulation study and determine a reasonable number of iterations.

30



Table 3: Number of Candidate Tours - Observed and Theoretical Maximum

N observed theoretical

1 1 1

2 2 2

3 3 3

4 5 6

5 7 10

6 9 20

7 13 35

8 24 70

9 26 126

10 38 252

11 63 462

12 105 924

As Table 3 shows, there is an increasing gap between the observed and
theoretical maximum at least for higher values of N. In this case, it is ad-
vantageous to obtain a gap, since it reduces the number of candidate tours
and in further consequence the runtime. It might be worth mentioning again
that these results come from the two-dimensional Euclidean space and might
have completely di�erent distributions when using di�erent distance metrics.

31



5.2.1 Upper Bounds for Number of Nodes

Based on the entries of the distance matrix it is possible to derive bounds
for the number of node visits for a given tour length limit. For this purpose,
the depot is not counted as a node visit. To formulate the boundary condi-
tion it is useful to introduce some new variables.

Let mi denote the distance from node i to the nearest distinct node (ex-
cluding depot) and denote their order statistics by m1,N to mN,N . Further-
more, let d0i,N denote the i-th order statistic of the depot distances. The
second subscript (N) indicates the size of the sample.

mi = min
j∈{1,...,N}

j 6=i

dij for i = 1, ..., N (14)

m1,N ≤ ... ≤ mN,N are the order statistics of {m1 , . . . , mN} (15)

d01,N ≤ ... ≤ d0N,N are the order statistics of {d0,1 , . . . , d0,N} (16)

The boundary condition for number of node visits (NV) is de�ned as follows:

B(k) :=


d01,N + d02,N +

∑k
i=2mi,N for 2 ≤ k ≤ N

2 · d01,N for k = 1

0 for k = 0

(17)

NVmax = max
k∈{0,1,...,N}
B(k)≤C

k (18)

Proposition 1.

NVmax as de�ned in (17) and (18) is a valid upper bound for the number
of nodes of tours satisfying (5)-(9).

In (17) the right side can be viewed as the highest number of node visits
that can still lead to a feasible tour. To prove this, consider an arbitrary
tour satisfying conditions (5)-(9). Therefore ∃! k ∈ {0, 1, ..., N} such that
NV = k. Without loss of generality, the visited nodes shall be {1, ..., k} in

32



this speci�c order. This can be achieved be renaming of the nodes. Since for
k ∈ {0, 1} the proof is trivial, from now on k ∈ {2, ..., N} will be assumed.
The length of this tour can now be written as follows.

L({1, ..., k}) = d0,1 + d1,2 + ...+ dk−1,k + dk,0

= d0,1 + d0,k + d1,2 + ...+ dk−1,k
(19)

By de�nition, the following inequalities hold.

mi ≤ di,i+1 for i = 1, ..., N − 1 (20)

mi+1 ≤ di,i+1 for i = 1, ..., N − 1 (21)

In the next step for an arbitrary j ∈ {1, ..., k} (19) will be used for
i = 1, ..., j − 1 and (20) will be used for i = j, ..., k − 1.

d1,2 + ...+ dk−1,k ≥ m1 + ...+mj−1 + mj+1 + ...+mk =

=

(
k∑
i=1

mi

)
−mj for j = 1, ..., k

(22)

Taking the maximum on both sides over this band of inequalities yields the
following.

d1,2 + ...+ dk−1,k ≥ max
j∈{1,...,k}

{(
k∑
i=1

mi

)
−mj

}
≥

=

(
k∑
i=1

mi,k

)
− min

j∈{1,...,k}
mj︸ ︷︷ ︸

=m1,k

=

=
k∑
i=2

mi,k ≥
k∑
i=2

mi,N

(23)

d0,1 + d0,k ≥ d01,N + d02,N for k = 2, ..., N (24)

Plugging (22) and (23) into (18) �nally yields the desired result and proves Proposition 1.

L({1, ..., k}) ≥ d01,N + d02,N +
k∑
i=2

mi,N for k = 2, ..., N (25)

33



(24) proves that B(k) as de�ned before is a valid lower bound for the tour
length of tours with k node visits. This bound will be tight for very small
values of k but not for higher values. As the problem is NP-hard one cannot
expect to �nd an easy-to-compute tight bound. Still this bound helps a lot
since it has a negligible runtime and discards all tours with NV > NVmax .
This is convenient because the tours with high NV correspond to the hardest
TSPs.

To estimate the e�ect of this bound it is useful to have a look at some
simulations. These are visualized in Figure 5 and 6. The key features of
the following simulations are uniformly randomly distributed points in a 10
by 10 square, Euclidean distance measure, 9 di�erent tour length limit lev-
els (1, 2, 3, 5, 10, 15, 20, 25, 30) on 5 di�erent problem instances. For now, no
LAP solving is included and candidate tours are identi�ed by TSP solving
only. This is equivalent to Strategy 1 in section 5.2.3 .

34



Figure 5: Runtime - Bound vs No Bound 1

Fig.5a
x-axis: RuntimeNoBound −RuntimeBound [sec]
Fig.5b
x-axis: Runtime [sec] without bound (on log scale)
y-axis: Runtime [sec] with bound (on log scale)
Fig.5c
x-axis: Number of TSPs without bound
y-axis: Number of TSPs with bound

On the dotted line (diagonal) both algorithms have the same runtime (b) or
number of TSPs (c), respectively.
Five di�erent colors correspond to �ve di�erent problem instances.

35



Figure 5a gives a nice overview on time di�erences caused by using the
bound from Prop. 1. Roughly one half of the simulations only have a small
di�erence (< 10 sec), whereas the other half shows an improvement between
10 and 220 seconds in favor of using the bound. Having no outlier instances,
in which the bound approach would be heavily outperformed, is important
here, since it is desirable to have a reliable strategy with some bene�ts rather
than a high-risk, high-reward approach.

This behavior can also be seen in Figure 5b. The datapoints near the
dotted line have a similar performance, while datapoints in the lower right
corner re�ect instances that can be solved more e�ciently by using the bound
approach. Due to the skewed distribution with a few outliers with high run-
times, the time is log scaled on both axis.

Closely related to runtime is the number of TSPs that need to be solved
in order to identify candidate tours. TSPs are the main source for runtime
in the �rst part of the algorithm, but the raw number might not be a good
estimate. TSPs are solved hierarchical with the largest TSPs (the ones with
the most nodes) in the beginning and are consecutively getting smaller. The
e�ort it takes to solve TSPs grows fast when increasing the number of nodes,
so leaving out the �rst few TSPs can conserve runtime considerably, while
only slightly reducing the raw number of TSPs. This can be seen when com-
paring Figure 5c with Figure 5b. Figure 5c shows one special yellow point
in the lower right corner. In this problem instance the bound reduces the
number of TSPs from 120 to 0. That e�ect also cuts down the runtime from
roughly 20 seconds to almost zero.

To con�rm the suspected e�ect, a test was conducted. 10000 bootstrap
iterations were generated and lead to an empirical distribution of the average
runtime reduction. A 95% con�dence interval will then decide whether the

nullhypothesis (mean(RuntimeNoBound −RuntimeBound) ≤ 0)

can be rejected in favor of the

alternative hypothesis (mean(RuntimeNoBound −RuntimeBound) > 0).

36



Figure 6: Bootstrap - Bound vs No Bound 1

y-axis: Bootstrap Frequencies
x-axis: Bootstrapped Mean [sec]
The red line is a 95% con�dence interval for the average time reduction by using
the bound from Prop. 1.

The positive e�ect, already seen in the previous graphs in Figure 5, of
applying the bound is a�rmed by the bootstrap results. Not even a single
one of 10000 bootstrap simulations found a negative change in average run-
time. In this regard, it is advantageous to obtain a con�dence interval with
respectful distance to zero even for a small sample size.

After withstanding this �rst test, there is another important compari-
son for this bound. As 5.2.3 and 5.2.4 explain in detail, also solving of Linear
Assignment Problems (LAPs) is an option to reduce the number of TSPs.
Strategy 2 and Strategy 3 use this approach and as Strategy 3 turns out to
be best it also be evaluated with and without the bound. For this reason,
the latest experiment will be repeated but Strategy 3 (includes LAPs) will
be used instead of Strategy 1 (no LAPs). The results are displayed in Figure
7 and Figure 8.

37



Figure 7: Runtime - Bound vs No Bound 2

Fig.7a
x-axis: Runtime [sec] without bound
y-axis: Runtime [sec] with bound
Fig.7b
x-axis: RuntimeNoBound −RuntimeBound [sec]
On the dotted line (diagonal) in Fig.7a both algorithms have the same runtime.
Five di�erent colors correspond to �ve di�erent problem instances.

In Figure 7a a large number of datapoints very near to the diagonal and
3 points, which show an improved performance by using the bound, can be
seen. The reason for this is that Strategy 3 uses LAPs to reduce the number
of TSPs and LAPs are a lot easier and faster to solve. So, there are several
cases were the unbounded approach closes the gap in runtime by discarding
TSPs that are otherwise discarded by the bound. In most cases TSPs dis-
carded by the bound can also be discarded by LAP solving. The 3 marked
datapoints are cases were this is not the case and the bound cannot be com-
pensated. Figure 7b shows the time di�erence which in 42 is cases very close
to zero with 3 datapoints being outliers on the far right. Again, the bound
proves to be a reliable tool because even in the worst case scenario the bound
approach performs very similar to the unbounded approach.

38



Figure 8: Number of TSPs and LAPs - Bound vs No Bound 2

Fig.8a
x-axis: Number of TSPs without bound
y-axis: Number of TSPs with bound
Fig.8b
x-axis: Number of LAPs without bound
y-axis: Number of LAPs with bound

On the dotted line (diagonal) both algorithms have the same number of TSPs (a)
or LAPs (b), respectively.
Five di�erent colors correspond to �ve di�erent problem instances.

Figure 8a appears to be a mirror image of Figure 7a with transformed
axis. This outlines the high impact and correlation of number of TSPs to
solve and total runtime. So, reducing the number of TSPs will result an in-
stant decrease in runtime. The datapoints 1,2 and 3 visualize this e�ect very
clearly. Unlike Figure 8a, Figure 8b does not show much of a connection to
Figure 7a (runtime). Solving LAPs takes a small amount of time compared
to TSPs.

39



When comparing runtime for bound computation and LAP solving, it is
important to consider that LAPs are known to be NP-hard and the bound,
which consists of order statistics of row sums, can be computed in O(N2).
This may cause the gap between bounded and unbounded approach to widen
for higher N.

Figure 9: Bootstrap - Bound vs No Bound 2

y-axis: Bootstrap Frequencies
x-axis: Bootstrapped Mean [sec]
The red line is a 95% con�dence interval for the average time reduction by using
the bound from Prop. 1.

Like before in Figure 6, 10000 bootstrap resamples were simulated. Figure
9 shows that the resulting 95% con�dence interval extends only over the pos-
itive section of the time axis, so it can be concluded that the bound approach
also improves performance when using an LAP-involving strategy (Strategy
3). All conclusions in this section are of course limited to the circumstances
under which the simulations were conducted.

40



5.2.2 Evaluation and Elimination

The main part of the algorithm follows a top-down approach. The start-
ing point is determined by the criterion NVmax of the last section. Then all
sets of nodes with size NVmax are generated and evaluated. Evaluation is
done with the Linear Assignment solver from the R-package adagio and the
Concorde TSP solver from the R-package TSP. Concorde is a very e�cient
exact solver for symmetric TSPs, which is a small limitation to the data that
can be dealt with.

Sets that have a TSP tour with length smaller than or equal to the tour
length limit C will be stored as candidate set along with the respective candi-
date tour. When all sets of sizeNVmax are processed, all sets of sizeNVmax−1
will be generated. After that there is an elimination step. All sets that are
subsets of a previously found candidate set are discarded. For this purpose,
the candidate sets will be used, since within a candidate set the elements
(nodes) are increasingly sorted by their node number by construction. For
each candidate set all subsets of size NVmax − 1 are generated. All of these
subsets are eliminated from the current list. Fortunately, the list of all sets of
size NVmax−1 as well as the subsets of candidate sets are ordered increasingly
by construction, so there is no need to check di�erent permutations.

From now on evaluation and elimination alternate until either all sets
of some size are eliminated or the set size reaches zero. At this point all
candidate tours are identi�ed.

5.2.3 Linear Assignment

Another possibility to reduce the number of TSPs is using the formulation
as Linear Assignment Problem (LAP). Both are very similar minimization
problems, but the TSP has subtour elimination constraints whereas the LAP
has none. It follows that the set of feasible tours of TSP is a subset of the set
of feasible solutions of the LAP. Also, every LAP solution can be interpreted
as a tour. Thus, it holds that for every set of nodes the optimal TSP solution
is greater than or equal to the LAP solution.

The question of interest is, if there exists a tour to visit a speci�c set
of nodes within a tour length smaller than or equal to C. Should the LAP
solution be greater than C, then the question can clearly be answered with
�no�. Otherwise the TSP has to be computed. Considering that LAPs are a

41



lot easier to solve, this is a big advantage compared to solving the TSP for
all cases. The next question that appears is when to stop computing LAPs.

There are three strategies that will be compared.

• The �rst strategy (S1) does not compute LAPs at all and only uses
TSPs instead.

• The second strategy (S2) starts with solving LAPs until one set cannot
be decided. It goes on with LAP solving until the current evaluation
step is over and stops then.

• The third strategy (S3) starts like the second strategy but lasts one
more additional evaluation step before stopping.

These strategies can be described by pseudo codes as follows.

Algorithm 2 Strategy 1
1: procedure
2: k← NVmax

3: candidate.tours← empty list
4:

5: loop:
6: if k = 0 then return candidate.tours
7: subsets← all subsets of n nodes of size k
8:

9: for i in subsets do
10: solve TSP for i
11: if TSP length ≤ C then
12: add TSP tour to candidate.tours
13:

14: k ← k − 1
15: repeat loop

42



Algorithm 3 Strategy 2
1: procedure
2: k← NVmax

3: candidate.tours← empty list
4: potential.candidate.tours← empty list
5: use.LAPs← true
6:

7: loop 1 :
8: if k = 0 then go to LAP evaluation

9: subsets← all subsets of n nodes of size k
10:

11: for i in subsets do
12: solve LAP for i
13: if LAP objective value ≤ C then
14: add i to potential.candidate.tours
15: use.LAPs← false
16:

17: k ← k − 1
18: if use.LAPs = true then repeat loop1
19: else go to LAP evaluation

20:

21: LAP evaluation:
22: for i in potential.candidate.tours do
23: solve TSP for i
24: if TSP length ≤ C then
25: add TSP tour to candidate.tours
26: go to loop 2
27:

28: loop 2 :
29: if k = 0 then return candidate.tours
30: subsets← all subsets of n nodes of size k
31:

32: for i in subsets do
33: solve TSP for i
34: if TSP length ≤ C then
35: add TSP tour to candidate.tours
36:

37: k ← k − 1
38: repeat loop 2

43



Algorithm 4 Strategy 3
1: procedure
2: k← NVmax

3: candidate.tours← empty list
4: potential.candidate.tours← empty list
5: use.LAPs← true
6: extra.round← true
7:

8: loop 1 :
9: if k = 0 then go to LAP evaluation

10: subsets← all subsets of n nodes of size k
11:

12: for i in subsets do
13: solve LAP for i
14: if LAP objective value ≤ C then
15: add i to potential.candidate.tours
16: use.LAPs← false
17:

18: k ← k − 1
19: if use.LAPs = true then repeat loop1
20: else
21: if extra.round = true then
22: extra.round← false
23: repeat loop1
24: else go to LAP evaluation

25:

26: LAP evaluation:
27: for i in potential.candidate.tours do
28: solve TSP for i
29: if TSP length ≤ C then
30: add TSP tour to candidate.tours
31: go to loop 2
32:

33: loop 2 :
34: if k = 0 then return candidate.tours
35: subsets← all subsets of n nodes of size k
36:

37: for i in subsets do
38: solve TSP for i
39: if TSP length ≤ C then
40: add TSP tour to candidate.tours
41:

42: k ← k − 1
43: repeat loop 2

44



5.2.4 Runtime Analysis

Since all strategies have the same output quality, the strategies are
assessed by looking at their runtime. The results of the �rst exploratory
simulations are illustrated in Figure 10 and Table 4. These also use a variety
of constraint levels. For each number of nodes 3000 simulations as described
in section 4.2 were conducted, TSP solutions computed and the maximum
was stored. The constraint levels used in Figure 10 and Table 4 are 10%,
30%, 50% and 70% of these individual maxima. For a better visualization,
these constraint levels have a horizontal displacement. The observed times
for N number of nodes with (10, 30, 50, 70) % of the particular maximum
are plotted at (N-0.15, N-0.05, N+0.05, N+0.15) respectively.

Figure 10: Runtime Comparison for 3 Strategies 1

y-axis: Runtime in seconds
x-axis: Number of nodes with small displacement for di�erent constraint levels
Strategies 1 (black x), 2 (red triangle) and 3 (green circle)

45



Table 4: Mean Runtime for 3 Strategies

S1 S2 S3

7.49s 6.44s 4.91s

It turns out that there is no dominant strategy that performs best in all
cases but S3 has the best overall performance in this �rst survey. To evaluate
this hypothesis, it is tested on a new simulation dataset.

The test is designed as follows

• For each possible combination of N ∈ {3, 4, 5, 6, 7, 8, 9, 10} and con-
straint levels of (10, 30, 50, 70)% of the corresponding observed maxi-
mum TSP tour 7 problem instances are generated and solved using all
3 strategies (analogously to pilot survey).

• Sample size equals 224 (per strategy).

(8 numbers of nodes x 4 constraint levels x 7 iterations)

• Nullhypotheses are mean(S1time − S3time) <= 0 and

mean(S2time − S3time) <= 0.

• Alternative Hypotheses are mean(S1time − S3time) > 0 and

mean(S2time−S3time) > 0, which translates to S3 being superior to S1
or S2, respectively.

• Testing on the aggregated data S1time − S3time and S2time − S3time
results in a design with independent observations.

• After evaluating assumptions for classic test procedures such as normal-
ity or symmetry, it turned out they were not satis�ed. Additionally,
the data is not identically distributed, so a robust and non-parametric
method was chosen, namely a bootstrap con�dence interval.

• Level of signi�cance is set to 0.05.

46



Figure 11 and Figure 12 are visualizing the testing data. In Figure 11
the raw time distribution can be seen, while Figure 12a presents the time
di�erences of S1 and S3 and Figure 12b presents the time di�erences of S2
and S3.

Figure 11: Runtime Comparison for 3 Strategies 2

y-axis: runtime in seconds
red line: mean computation time

47



Figure 12: Runtime Di�erences

y-axis: Runtime in seconds
12a: S1time − S3time
12b: S2time − S3time

Table 5: Selected Statistics of Testing Data

statistic S1 S2 S3 S1-S3 S2-S3

mean 14.22s 11.69s 9.26s 4.96s 2.43s

median 1.01s 0.19s 0.36s 0.00s 0.00s

sd 31.31s 26.89s 21.58s 14.09s 7.60s

min 0.00s 0.00s 0.00s -19.54s -11.83s

max 154.27s 143.04s 129.08s 97.24s 42.45s

p-value of KS test* < 10−10 < 10−10 < 10−10 < 10−10 < 10−10

* Kolmogorov-Smirnov test to assess if data is normally distributed

48



As mentioned before, the data violates assumptions of standard test pro-
cedures. The time measures are not identically distributed because measures
on problems with more nodes have higher a higher expected value and a
higher variance. Nevertheless, it is necessary to use a variety of node num-
bers to get representative and general results. It was expectable that the
computation times of the pure strategies do not follow a symmetric distri-
bution, since they are naturally truncated at zero. Figure 11 displays this
right-skewed distribution. Figure 12 also visualizes a naturally right-skewed
distribution. By design of S3 it can only be outperformed by the duration
of solving a few LAPs, which can quickly be done. On the contrary S3 can
have a lower number of TSPs, which are a lot harder to solve, so there is a
lot of potential for S3 to outperform S1 and S2.

None of the data vectors follows a normal distribution. This is of course
closely linked to the non-ful�lled symmetry property. The corresponding test
results are listed in the last row of Table 5.

In Figure 13 the results of 10000 bootstrap iterations each are shown in
histograms with added 95 % con�dence intervals.

49



Figure 13: Bootstrap Results

y-axis: Frequencies
x-axis: Means of bootstrap simulations

red: 95 % con�dence interval for the true mean
13a: S1time − S3time
13b: S2time − S3time

50



The construction of the con�dence intervals was done by simply taking
the 0.025 and 0.975 quantiles of the resampled means. This is a natural way
to obtain con�dence intervals from bootstrap methods. Now these con�dence
intervals are used for hypothesis testing. Both con�dence intervals are strictly
> 0, so it is not plausible, that the mean time di�erence of the strategies is
≤ 0. Therefore, the null hypotheses

• mean(S1time − S3time) ≤ 0 and

mean(S2time − S3time) ≤ 0

can be rejected in favor of the alternative hypotheses

• mean(S1time − S3time) > 0 and

mean(S2time − S3time) > 0.

It follows that S3 is superior to both S1 and S2 and will therefore be used
in the algorithm.

5.3 Determine Optimal Schedule

In the �rst part of the algorithm important variables in particularly the
number of time steps T , the vector of weights w and the decay factor q were
not used since they are independent of the set of candidate tours. In this
section, these variables loom large, whereas distance matrix and tour length
limit are not required anymore.

As mentioned before, determining the optimal schedule is quite di�cult.
Small changes for weights, decay factor or the set of candidate tours can lead
to completely di�erent solutions. Additionally, it is hard to evaluate parts
of the algorithm without knowing the exact schedule, which would be done
in a branch and bound approach. While collecting a high value in one time
step is pro�table, it deteriorates the outlook for the next one. Still the total
uncollected value is not a su�cient measure because its distribution is also
of importance.

51



However, a rule can be established. In order to do so, the following two
cases based on the set of candidate tours are distinguished.

(i) There are multiple best tours.

(ii) There is a unique best tour.

A candidate tour is considered a best tour if it performs better than or
equal to all other candidate tours in the classic orienteering problem (T = 1).
Let n from now on denote the number of candidate tours. Case (i) is the
easier one for enumeration as in the optimal schedule consecutive tours are
always distinct. Should a schedule contain two consecutive identical tours,
then one can always construct a similar schedule that outperforms it. The
reason for this property is the structure of the zi's and that recently visited
nodes decrease in value, while others increase.

Case (ii) contains a special case namely n = 1. If there is only one can-
didate tour, then of course the optimal schedule will consist of T copies of
that one tour. Even for n > 1 and T > 1 the optimal schedule can consist
only of copies of one tour or at least have some consecutive identical tours.
This occurs in problems that have one very dominant candidate tour and a
few other less viable ones that visit outlier nodes or in problems that have a
high decay factor. Still these problems have in common, that if there appear
consecutive identical tours in the optimal schedule, then these must be copies
of the unique best tour.

Theoretically, there is a third case in which the set of candidate tours
is the empty set but hence the problem is trivial.

52



It is important to check if this rule does not violate the claim to �nd the
exact solution. Therefore, superior schedules are constructed for the omitted
ones. As mentioned in chapter 2, the schedule score consists of two com-
ponents, namely the basic score of the included tours and a penalty, which
punishes large overlaps of the tours. There are two intuitive approaches to
improve the score of a schedule with consecutive identical tours (also called
pairs). The �rst move consists of swapping the �rst tour of the pair with
the tour right before the pair. This does not change the basic score, because
the same nodes (with respective multiplicities) are included, but it improves
the overlap structure because the pair nodes are now separated. This move
can always be performed unless the pair consists of the �rst two nodes of
the schedule. In this case, the second move is performed. It replaces the
�rst node of a pair with the best tour. The basic score increases, because a
not-best tour is replace by the best tour, and the overlap structure cannot
worsen because it is locally already at the lowest level. This moves can be
iterated and eventually lead to schedules without pairs of not-best tours. Af-
ter the �rst iteration, one has to exclude the best tours (X) from swapping
and replacing. Table 6 and 7 list the omitted schedules and provides superior
schedules. Due to the increasing number of possibilities, only schedules for
T ≤ 5 are covered.

To verify the dominance, the comparison was formulated as an LP. There-
fore, the tours have to be divided into 2# of tours pairwise disjoint sets that
represent all possible intersections of tours. The objective function is the
di�erence of the score of the discarded schedule and the superior schedule.
A block of equality constraints ensures the subsets form a proper partition
of the node space. For instance, all sets formed by intersections with tour
A have to sum up to A. Inequality constraints are employed to express the
superiority of the best tour. In this setting a negative objective value means
the pair-avoiding tour has a higher score, while a positive objective value
means the pair-including tour has a higher score. The LP maximizes over all
possible overlaps between all tours. If the optimal solution is ≤ 0, then there
exists no con�guration of nodes such that the tour with consecutive identical
tours is superior. All LPs had an optimal solution ≤ 0 and many even had
all coe�cients of the objective function ≤ 0.

In case (ii) (multiple best tours) the process is analogously, but in case of
multiple insertions of X, di�erent best tours are used to produce even better
scores and consequently omit more schedules.

53



Table 6: Omitted Schedules T=2,3,4

Discarded Schedule Superior Schedule

T=2

AA XA

T=3

AAB XAB

ABB BAB

AAA XXA

T=4

AABC XABC

ABBC BABC

ABCC ACBC

AABB ABAB

ABBA BABA

AAAB XXAB

AABA XABA

ABAA XABA

BAAA XABA

AAAA XXXA

A,B,C and D denote tours that are pairwise distinct and can be
identical to X unless they are part of a pair in the left column.

X denotes the best tour.

54



Table 7: Omitted Schedules T=5

Discarded Schedule Superior Schedule

T=5

AABCD XABCD

ABBCD BABCD

ABCCD ACBCD

ABCDD ABDCD

AABBC ABABC

AABCB ABACB

ABACC ABCAC

ABBAC BABAC

ABBCA BABCA

ABBCC BACBC

ABCCA ACBCA

ABCCB ACBCB

AAABC XXABC

AABAC XABAC

AABCA XABCA

ABAAC XABAC

ABCAA ABACA

ABBBC XBABC

ABBCB BABCB

ABCBB BABCB

ABCCC CACBC

AAAAB XXXAB

AAABA XXABA

AABAA XXABA

ABAAA XXABA

ABBBB XXBAB

AAAAA XXXXA

55



The algorithm generates all possible combinations for schedules that con-
sist only of candidate tours and then omits instances that include consecutive
identical tours unless they are copies of a unique best tour. Subsequently,
the remaining schedules are evaluated and the maximizer (not necessarily
unique) is returned.

Clearly, the runtime of the second part heavily depends on n and T . The
number of possibilities can be computed by the following formulas and is
illustrated by Figure 14.

Total (un�ltered) = nT for T ≥ 1; n ≥ 1 (26)

Case (i) (�ltered) =

n(n− 1)T−1 + nT−2 + (T − 2)(n− 1)T−2

for 2 ≤ T ≤ 5; 1 ≤ n ≤ 15

(27)

Case (ii) (�ltered) = n(n− 1)T−1 for T ≥ 2; n ≥ 2 (28)

Unlike (26) and (28), equation (27) has no straightforward combinato-
rial interpretation. However, the formula was tested on all points within the
given range and returned the right number of schedules for all input values.

56



Figure 14: Number of Possibilities for Schedule Optimization (T=5)

x-axis: number of candidate tours
(a) Total number of possibilities un�ltered (black), case (i) (red) and case (ii)
(green)
(b) Relative share of possibilities: case (i) (red) and case (ii) (green), both
divided by un�ltered

57



6 Application Example

6.1 Data Description

To exemplify the results of the algorithm, consider the following problem
setting. A company has potential customers in all Austrian provincial capi-
tals and Munich. Due to its central position Salzburg serves as depot. The
expected revenue per visited city is computed by a degressive proportional
function (see (29)) based on the number of inhabitants [25]. Distances from
one city to another were computed by calculating the road distances of the
fastest tour with data of Google Maps [26] and then rounded to multiples
of full kilometers. Di�erent tour length limits ranging from 500 to 1000 km
provide a comprehensive view of how solutions look like and change in depen-
dence on the parameter. T = 5 represents a �ve-day workweek. Inhabitants
are measured in multiples of 1000 and weights are rounded to whole numbers.

For a �rst view on the problem, the decay factor q is set to 0.9 which
is a rather slow decay and makes a diverse schedule more attractive. In this
application example, q can be interpreted as probability that the demand of
a potential purchase is still available after one day. In other words every-
day there is a chance of 1 − q for a potential customer to lose interest in
the purchase or buy at another competitor. The zti are the time-dependent
multipliers that state how much more revenue one can expect from this node
compared to the starting value of the node. z1i = 1 for all i and will trans-
form to z2i = 1 + q if node i is not visited at time step t = 1. Consequently,
there is the "1" for the fresh demand of the second day and "q" which is the
rest of the demand of the �rst day. Conversely, if node i does get visited at
time step 1, then there is no left over demand from day 1 and the demand
is reset to z2i = 1, which is the fresh demand of day 2. Should city i get

no visit for the �rst 4 days, then z5i = 1 + q + q2 + q3
q=0.9
= 4.0951 so there

will be demand roughly equal to about 4 consecutive visits. Hence, there is
an incentive to plan diverse tours to meet the accumulating demand. For

q′ = 0.3 the multiplier would only be z5i = 1 + q′ + q′2 + q′3
q′=0.3
= 1.4251 so

there is only very little reward for including unvisited nodes. This would lead
to tours that visit nodes with a high weight every day, whereas nodes with
small weight and far away from depot would get no visits at all. The choice
of q is of course important and users of this algorithm should do some kind
of pilot study to estimate q. In the section Results a variety of values for q
are compared and di�erences are highlighted.

58



The growth/decay model will simplify to a linear growth in zti (q = 1) or
to constant zti (q = 0) for appropriate values of q which gives adaptability to
this model to describe the underlying process as good as possible.

weight(City) = Round(
√
Inhabitants+ 10) (29)

Table 8: City Details

City Abbreviation Inhabitants Weight

Salzburg (Depot) S 151 22*

Bregenz B 29 15

Eisenstadt E 14 14

Graz G 280 27

Innsbruck I 131 21

Klagenfurt K 99 20

Linz L 201 24

Muenchen M 1450 48

St.Poelten P 53 17

Vienna V 1840 53

* Salzburg's weight is only computed for visualization reasons. For problem
solving Salzburg has no weight at all in its role as depot.

59



6.2 Network

The problem is visualized in di�erent levels of abstraction. To begin with,
the cities' locations are determined by their geographic coordinates [27] [28].
Edges are only drawn if they match the real road network and are part of at
least one tour. This can be seen in Figure 15.

Figure 15: Geographical Problem Representation

Figure 15 represents the geographic arrangement with the edge lengths
depicting the airline. For the problem as de�ned it is more intuitive to plot
the actual road distance instead. This leads to an optimization problem
called multidimensional scaling (see Kruskal 1964 [13]), which can be solved
by using the R-function cmdscale. The exact solution for this problem typi-
cally has the dimension of the number of nodes− 1, so the two-dimensional
solution should be seen as an approximation. To account for population size,
the cities' radii correspond to the weights de�ned in (28). Figure 16 therefore
gives a less geographic but more problem-oriented point of view.

60



Figure 16: Problem-Oriented Representation

When comparing Figure 16 with Figure 15, one can clearly see that Vienna
and Linz are moving towards the center and on the other hand St. Pölten
is moving outwards meaning that Vienna and Linz have a good transport
connection.

61



6.3 Results

In Table 9, optimal schedules (Day 1-Day 5) and �nal objective values
(Obj.val) for the di�erent constraint levels as well as some algorithm details.
The �rst part of the algorithm consists of identifying the set of candidate
tours, which is measured by time1. This quantity is mainly in�uenced by the
number of solved LAPs (# Assign) and the number of solved TSPs (# TSP).
The second part enumerates and evaluates possible schedules and is measured
by time2. Its runtime has a strong relation to the number of candidate tours
(n) and the number of time steps (T = 5). Figure 17 and 18 illustrate an
example schedule.

Table 9: Application Example Results Summary (q=0.9)

500km 600km 700km 800km 900km 1000km

Day 1 LP K BM IBM KGVPL LPVEGK

Day 2 IM IM EV LPVE IBM LIBM

Day 3 K G GK LGK LPVEG LPVEGK

Day 4 LP PV IM IBM IBM LIBM

Day 5 IM LM LPV LPVG KGVPL LPVEGK

Obj.val 524.4 693.4 831.5 954.8 1026.7 1068

Best Tour IM LM LPV LPVG KGVPL LPVEGK

time1 [sec] 1.1 6.2 13 13.9 22 29.4

time2 [sec] 0.1 1.6 29.7 6.9 675 118.4

# Assign 120 210 252 252 210 120

# TSP 8 54 131 143 234 303

n 3 6 10 8 15 12

62



Figure 17: Example Tour 1

This tour is scheduled for Day 1, 3 and 5 for C=1000km.
For C=1000km this is the unique best tour.

Figure 18: Example Tour 2

This tour is scheduled for Day 2 and 4 for C=1000km.

63



In the schedules with lower constraint levels Munich is very present, while
for the higher constraint levels Vienna is visited most. The reason for it is
that both cities have high weights due to their large number of inhabitants
and Munich pro�ts from its closeness to Salzburg, whereas Vienna pro�ts
from the fact that area east of Salzburg has more cities overall.

Interestingly, all schedules �nish with the unique best tour. This seems
reasonable, since after the last time step all left-over values expire. Still, it
could happen that the unique best tour does not even appear in the optimal
schedule. Best tours are determined by their short-term properties and do
not necessarily have good long-term properties. An example for a problem
instance, in which the best tour does not appear in the optimal schedule, is
mentioned in chapter 7.

When comparing the time measures with the most in�uential factors, one
can see a perfect rank correlation between time1 and # TSP and between
time2 and n. Time spent on using LAPs is negligible and should mainly be
seen as a way to decrease # TSP.

6.3.1 Parameter Sensitivity

The results from Table 9 assumed a static decay factor q = 0.9. This sec-
tion will deal with multiple values for q and provides a possibility to bound
the optimal objective value even if q is unknown. The tour length limit C,
which also impacts the outcome a lot, will take the same values as before.

Table 10 compares the optimal solutions for all combinations of C ∈
{500, 600, 700, 800, 900, 1000} and q ∈ {0.1, 0.3, 0.9, 0.99}. 0.99 was chosen
instead of 1 because for q = 1 an anomaly occurs which typically produces a
high number of solutions with identical optimal objective value. For q = 0.99
the optimal schedule is unique in most cases and is also included in the set of
optimal schedules for q = 1. So, using q = 0.99 instead of q = 1 gives similar
results to q = 1, ranking all solutions by gradient and choosing the �attest.
The anomaly that produces the ties is that for q = 1 there is no decay so
the collected reward for a speci�c node only depends on the last visit, where
all accumulated pro�t can be picked up without discount. All visits of the
same node before this last visit can be permutated or even skipped. Unlike
Table 9, it omits some lines because the best tour, # Assign, # TSP and n
are completely identical to the values in Table 9 and time1 and time2 have
the same distribution as before but of course have slightly di�erent values
for repeated measurements.

64



Table 10: Application Example Results for di�erent values of q

500km 600km 700km 800km 900km 1000km

q=0.1

Day 1 IM LM LPV LPVG KGVPL LPVEGK

Day 2 IM PV LPV LPVG KGVPL LPVEGK

Day 3 IM LM LPV LPVG KGVPL LPVEGK

Day 4 IM PV LPV LPVG KGVPL LPVEGK

Day 5 IM LM LPV LPVG KGVPL LPVEGK

Obj.val 345 384.4 470 605 705 775

q=0.3

Day 1 IM LM LPV LPVG KGVPL LPVEGK

Day 2 LP PV IM IBM MLV MLVP

Day 3 IM IM LPV LPVG KGVPL LPVEGK

Day 4 LP PV IM IBM MLV LIBM

Day 5 IM LM LPV LPVG KGVPL LPVEGK

Obj.val 355 442 517.8 654 740.2 816.4

q=0.9

Day 1 LP K BM IBM KGVPL LPVEGK

Day 2 IM IM EV LPVE IBM LIBM

Day 3 K G GK LGK LPVEG LPVEGK

Day 4 LP PV IM IBM IBM LIBM

Day 5 IM LM LPV LPVG KGVPL LPVEGK

Obj.val 524.4 693.4 831.5 954.8 1026.7 1068

q=0.99

Day 1 LP K EV IBM KGVPL LPVEGK

Day 2 IM IM BM LPVE IBM LIBM

Day 3 K G GK LGK LPVEG LPVEGK

Day 4 LP PV IM IBM IBM LIBM

Day 5 IM LM LPV LPVG KGVPL LPVEGK

Obj.val 564.4 773.5 920 1021.4 1077.3 1106.7



As a reminder, q is the fraction of the current value of a node that is
carried over to the next time step if this node is not visited during the cur-
rent time step. Consequently, a high value of q describes a slow decay and a
small value of q describes a fast decay. It makes sense that for q = 0.1 the
schedules tend to repeat one tour throughout the whole time span because
the fast decay works similar to a reset of the nodes. Conversely, the schedules
for q = 0.99 tend to use a broad variety of nodes (and consequently tours)
because the slow decay makes ignoring nodes for the whole time span very
unappealing.

A property that all tested parameter combinations have in common, is
that they all have the unique best tour at the last time step in the optimal
schedule. Intuitively, it makes sense to use a very rewarding tour at the end
when the reward piled up. However, this is a tendency and not a general
property. As later mentioned in chapter 7, there exist problem instances that
do not use the unique best tour in the optimal schedule. So �xing the last
time step to the best tour could be a good approach for heuristics but it
might discard the optimal schedule in rare cases.

At �rst glance it is not obvious if optimal schedules found for one value of
q will also perform good for others. Figure 19 compares all schedules found
with each other for the whole range of q ∈ [0, 1]. In this image the di�er-
ences on the left side of the plots are a lot smaller than the di�erences on
the right side of the plots. This suggests that it is safer to overestimate q
when searching for a good schedule because the solutions found for large q
also perform relatively well for small q but on the other side optimizing for
small q will lead to results that perform poorly for large q. The latter case
holds true especially for the constant lines which are schedules that repeat
one tour throughout the whole time span and therefore typically ignore some
nodes completely.

66



Figure 19: Objective Value in Dependence of C and q 1

y-axis: Objective Value
x-axis: q
In each plot the colors represent the optimal solutions for given C and q with the
color code being gray (q=0), black (q=0.1), red (q=0.3), green (q=0.9), blue
(q=0.99). Gray and blue were omitted if the corresponding solutions were
identical to black or green, respectively. The circles also denote the value of q for
which the solution is optimal.
The box at the bottom indicates the constraint level C.

67



Figure 20 combines the optimal schedules of the grid points for q to use
the most rewarding schedule for given q, where one line represents one con-
straint level. Of course, intervals between the grid points could theoretically
be optimized by a schedule that is not optimal for any of the grid points and
hence not used in this graph. If such a schedule should exist, it can only
surpass the objective value of the plotted line by a small amount. This will
be discussed at Figure 21. The lines in Figure 20 are lower bounds for the
objective value, which are tight at the grid points. The graph also includes
the total minimum (0) and maximum (1195) objective value which are at-
tained for appropriate C but are independent of q. They are attained by
visiting all cities every day or no cities at all, respectively.

Figure 20: Objective Value in Dependence of C and q 2

y-axis: Objective Value
x-axis: q
This image depicts the optimal combination of all found solutions at
q ∈ {0, 0.1, 0.3, 0.9, 0.99, 1}, which are also highlighted by the vertical lines.
The color code is black (C<62), blue (C=500), orange (C=600), turquoise
(C=700), yellow (C=800), magenta (C=900), green (C=1000), red (C≥1611).

68



For the next calculations, it is necessary to recall the de�nition of the
objective function and variables occurring from chapter 4. They are listed in
(30). These will make it possible to derive some mathematical properties to
create upper bounds for the optimal objective value between the grid points.

objective function:
T∑
t=1

N∑
i=1

wi · zti · yti → max

yti =

{
1 i is visited in time step t

0 otherwise

for i = 1, ..., N ; t = 1, ..., T

zti =

{
1 + q · zt−1i yt−1i = 0

1 yt−1i = 1 or t = 1

for i = 1, ..., N ; t = 1, ..., T

zti ∈
{
1, 1 + q, 1 + q + q2, . . . ,

T−1∑
k=0

qk
}
for i = 1, ..., N ; t = 1, ..., T

wi ∈ R+ for i = 1, ..., N

(30)

Let OC(q) denote the optimality function which for �xed C assigns the op-
timal objective value to an input q. This function is the pointwise maximum
of all possible schedules' objective values.

OC(q) = max
(4)−(9) hold

T∑
t=1

N∑
i=1

wi · zti(q) · yti

= max
s ∈ feasible schedules

T∑
t=1

N∑
i=1

wi · zti(q, s) · yti(s)

(31)

As (31) outlines, the value of q in�uences the zti directly and the yti in-
directly by making di�erent schedules optimal. For a �xed schedule s, wi
and yti are non-negative constants and the zti are monotone and continuous
in q. Finite sums are also monotone and continuous functions so for a �xed
schedule the objective value is monotone and continuous in q. Furthermore,
zti(q) is twice continuously di�erentiable in q. zti(q) is a polynomial in q with
only positive coe�cients so the second derivative is ≥ 0. This makes zti(q) a
convex function. Multiplying convex functions with non-negative constants
yields convex functions, as well as summing up a �nite number of convex

69



functions. Thus, the objective value for a �xed schedule is a monotonous,
continuous and convex function. None of these properties is lost when taking
the maximum over a �nite set, hence OC(q) is also a monotonous, continuous
and convex function.

In an application example, where distances dij, weights wi and constraint
level C are known but q is unknown, OC(q) is unknown, but can be evaluated
for every q by solving the MPOP for this speci�c q. If OC(q) is known at a
small number G ≥ 1 of grid points g1 ≤ ... ≤ gG then the resulting sched-
ule(s) as well as their pointwise maximum are all lower bounds for OC(q).
For the lower bounds, no additional properties are required.

OC(q) = max
s ∈ feasible schedules

T∑
t=1

N∑
i=1

wi · zti(q, s) · yti(s)

≥ max
s ∈ feasible schedules

s optimal at a grid point

T∑
t=1

N∑
i=1

wi · zti(q, s) · yti(s)
(32)

For the upper bounds, there are three di�erent cases depending on the
location of the value of q at which OC(q) needs to be bounded.

(i) q is smaller than the smallest grid point g1.

(ii) q lies between two consecutive grid points.

(iii) q is larger than the largest grid point gG.

In case (i) it is possible to create a bound using monotonicity. OC(q) is
monotonously nondecreasing, so q < g1 directly implies OC(q) ≤ OC(g1).

Case (ii) is the main case. Say, the two consecutive grid points are gi
and gi+1 and because q lies between them it holds that gi < q < gi+1. By
convexity of OC(q) it follows that OC(q) ≤ α ·OC(gi)+ (1−α) ·OC(gi+1) for
appropriate α such that q = α · gi + (1− α) · gi+1.

If q lies in case (iii) then constructing a tight upper bound is complicated.
One possibility is to compare it to the perfect schedule of visiting all nodes
at all time points (red line in Figure 20). Another option is to formulate a
bound on the highest possible slope of OC(q) by bounding the derivative of
zti(q). Both methods will typically lead to very loose upper bounds and are

70



not helpful. A better approach is choosing the largest grid point equal to
gG = 1−ε for ε very small. If ε is su�ciently small, then the schedule optimiz-
ing OC(1−ε) will be identical to one of the set of schedules optimizing OC(1)
because for a �xed schedule the objective value in dependence of q is continu-
ous. Having one grid point near 1 also has an advantage for the quality of the
lower bounds. Should q be equal to one of the grid points, creating bounds
is of course obsolete because the exact value of the function is already known.

To illustrate the application of bounds, both lower and upper bounds are
computed and plotted for C = 500 km in Figure 21.

Figure 21: Bounds for Optimal Objective Value using Convexity

y-axis: Objective Value
x-axis: q
Optimal solutions for q=0 (red), q=0.1 (red), q=0.3 (green), q=0.9 (blue) and
q=0.99 (blue).
The black lines are the bounds for the optimal objective value.

71



Figure 21 displays that even for a small number of grid points (G=5)
narrow bounds can be computed. The performance of the bounds is best
between grid points that are optimized by the same schedule. If additionally
the objective value of this schedule is linear in q, then the lower and upper
bound are equal in this interval. Should the spread between the bounds be
too large at some points or intervals, it can easily be reduced by adding
grid points in this speci�c area. In general, the optimal choice of grid points
depends on the application. It works well to choose g1 = 0 and gG = 1−ε with
some grid points in between with focus on the area of interest or equidistant.

6.3.2 Runtimes for more Time Steps

In the application example the number of time steps was set to T = 5
to represent the �ve days of a workweek. For this setting the computation
time was not a big issue. But the number of possible schedules and there-
fore runtime increases very fast with the number of time steps. To estimate
runtimes for a higher T, the emphasis was put on the time2 variable, which
measures the time to enumerate and compare all schedules. time1 (the time
to identify candidate tours) does not depend on T and can be seen as a con-
stant in this regard. Section 5.3 already stated how the relation of number of
candidate tours, number of time steps and the number of iterations works, so
it is possible to extrapolate the computation times for other possible values
of T. The predictions are summarized in Table 11.

Table 11: Runtime Predictions

T 500km 600km 700km 800km 900km 1000km

time1 any 1s 6s 13s 14s 22s 29s

n any 3 6 10 8 15 12

time2 5 <1s 2s 30s 7s 11m 2m

time2 6 <1s 25s 11m 3m 3h 37m

time2 7 1s 2m 2h 19m 35h 7h

time2 8 2s 11m 16h 2h 500h 75h

time code: seconds (s), minutes (m), hours (h)

72



If the number of time steps would increase from T = 5 to T = 6 this
would still be possible to compute within reasonable time. But already for
T = 7 one MPOP needs a runtime of more than one day. For a higher num-
ber of nodes (currently N = 9, excluding depot), which will typically result
in a higher number of candidate tours, also T = 6 can take a long time.
The predicted runtimes of Table 11 should not be seen as exact numbers but
more as rough estimates. They still give a good intuition on which problem
instances are manageable. Of course, runtime can be cut down by running
the algorithm on a supercomputer.

73



7 Conclusions

The algorithm proposed in this thesis is designed to solve the MPOP
exactly and in a time-e�cient way. The MPOP is based on a set of nodes
that are of di�erent importance and have distances between each other. The
aim is to �nd the optimal T-tuple of tours such that the total pro�t is max-
imized after T time steps. These tours must also satisfy a tour length limit
constraint as well as start and end at the depot node. Furthermore, they have
to ful�ll the typical tour constraints known from the TSP. The path has to
be connected, avoid subtours and each node must not be visited more than
once per tour. Up to this point goes the general description of the MPOP.

In particular, the MPOP considered here has no vehicle capacity con-
straints, no time windows, a special growth/decay model and the full reward
can be collected upon visit. The reward for visiting a node grows linear over
time, while not visiting results in an exponential decay. The algorithm is
very �exible with respect to this model. It can be exchanged easily in the
code as long as the new model does not lead to negative node values. The-
oretically, it is even possible to adjust the algorithm to allow di�erent tour
length limits for di�erent time steps. This could represent shorter workdays
that some companies have on Friday or Saturday. Of course, there would be
an increase in runtime. On the other hand, it is not possible to implement
the option to carry over unused resources to the next time step without a
complete overhaul. The same holds true for time window constraints, which
would require a new design of candidate tour identi�cation with an exact
TSP solver that can deal with time windows. Moreover, the algorithm can-
not deal with objective functions with di�erent objective variables such as
minimizing the number of time steps (∼ number of vehicles) such that a
given pro�t is exceeded, which would be the case in some variations of the
(Selective) Vehicle Routing Problem. In the classic setting, the depot has no
reward attached to it. If there is the need to add an importance weight to
the depot, it can be handled by adding a new node with the desired weight
and distance 0 to the depot.

For the particular MPOP treated in this thesis, the runtime results were
obtained and the runtimes for further problems were extrapolated. Since the
time for the candidate tour identi�cation only plays a minor part for the
total runtime, is hard to predict and independent on T, only the runtime of
the enumeration step is factored in. Table 12 outlines the relation of problem
size and runtime.

74



Table 12: Problems to be solved in under 8 hours

n 3 4 5 6 7 8-9 10-12 13-18 19-31 32-72 73-297

T 17 13 11 10 9 8 7 6 5 4 3

n: number of candidate tours
T: number of time steps

For each number of candidate tours, the maximum number of time steps
that can be covered within 8 hours of runtime is computed and stated in
Table 12. Certainly, the runtime can be reduced by a decent factor by using
modern hardware with a high-performance computing. The adduced prob-
lem sizes are approximately of same runtime complexity and point out the
tradeo� between candidate tours and time steps. There are some limits to
how fast the exact solution can be found because the problem is known to
be NP-hard.

The division of the algorithm into two steps is a very important prop-
erty. Fortunately, the problem design o�ers the opportunity to separate the
input variables and solve one big problem with all variables by solving two
smaller problems (identifying candidate tours and evaluating schedules) with
less variables. Thereby, the enumeration complexity is drastically decreased.
This is a bene�t on the one hand, but restricts the implementation of new
enhancements to the algorithm. The distances and length restrictions in the
current algorithm have to be identical for every time step. This can be ex-
tended to have di�erent conditions for di�erent time steps as long as the
conditions are independent of each other (e.g. no carry-over of unused re-
sources to the next time step). Another restriction is the use of the symmetric
TSP solver Concorde. It requires the distances to be symmetric, which could
be a problem in cities with many oneway roads. Typically, TSP solvers that
focus only on symmetric TSPs are faster and most real tra�c networks can
be approximated well enough by a symmetric distance matrix.

In some cases, it is necessary to visit each node at least once per period.
If the optimal schedule does not satisfy this condition, then there are two
possibilities to force its ful�llment. One approach is to increase the period
length. For example, the tours of the garbage collection typically have greater
period lengths in areas with a low population density to avoid ignoring some
households. Another option is to add a penalty to the objective function for
every unvisited node. Both approaches can also be combined if necessary.

75



The main use of the algorithm is the computation of the best schedule for
given input parameters. Conversely, it can also be used the other way round.
It can help planning the infrastructure by evaluating di�erent variations of
input values and �nd the optimal conditions for a pro�table setting. In the
example of harvest collection this can be used to �nd a good place to build
the depot, determine the optimal number of truck drivers or buy/sell a �eld.

To start the algorithm, the input parameters have to be chosen. Find-
ing the appropriate period length is usually not a problem. Di�erent period
lengths (weekly vs. biweekly) can also be compared if the setting is �exible in
this regard. Choosing distances and maximum tour length is typically easy
if it is a single unit such as time, length or money. It can be more di�cult
if the limit is expressed by an abstract score that combines multiple units.
Assigning importance weights to the nodes will not be an issue normally.
Tuning the decay factor can be a challenge. Two possible options, in case
a suitable value is unknown, are to conduct a pilot study or to use multiple
values for the decay factor as explained in section 6.3.1.

The topic in general and the algorithm in particular provide a lot of
room for further research. Speci�cally, performance comparison with other
algorithms are of interest such as comparing the solution quality with fast
heuristics and the runtime with other exact algorithms or new variants such
as an adaption of this algorithm which solves the enumeration part with
(I)LP solver CPLEX. Conveniently, the problem formulation of chapter 4
already satis�es the conditions of integer linear programming, but starting
with LP solving after candidate tour identi�cation will reduce the amount
of necessary variables drastically. Relaxing integer constraints and combine
with branch and bound to ensure optimality should be used as well.

While there is a variety of possible enhancements to the algorithm that
extend the range of problems it can be applied to, which were mentioned
already, there are also adaptions that can potentially improve runtime. First
there is the chance to make the number of LAP iterations �exible and de-
pendent on input parameters. For example, a higher number of nodes leads
to a higher number of LAP iterations. Second identifying potential patterns
that cannot lead to optimal schedules could save a lot of enumeration steps
and hence runtime. These patterns could include a criterion that penalizes
a big overlap of tours in the same schedule or ranks schedules with the same
tours based on their permutations.

76



One hypothesis for pattern utilization can be discarded because of a
counter example. Like the results of section 6.3 suggested, scheduling the
best tour on the last time step tends to produce very good solutions. While
all optima in section 6.3 followed this pattern, it turned out to be non-
binding. Even the weaker hypothesis, that the best tour is included in every
optimal schedule (at an arbitrary time step), can be disproved. If these pat-
terns were binding, omitting all schedules without best tours on the last/any
time step would never result in a loss in solution quality while saving eval-
uation iterations. Albeit, this turned out to be a tendency and thus can be
used for heuristics only. Figure 22, Table 13 and Table 14 depict the counter
example that proves the hypotheses wrong.

Figure 22: Counter Example - Best Tour

x-axis, y-axis: coordinates of datapoints
1-5: datapoints, red: depot
The candidate tours are mapped in orange, green and blue, respectively.

77



Table 13: Counter Example - Best Tour - Candidate Tours

Node Weight Tour A Tour B Tour C

0 (Depot) NA ! ! !

1 1 !

2 1 ! !

3 0.01 !

4 1 ! !

5 1 !

Tour Length 2.49 3.75 3.75

Tour Pro�t 2.01 2.00 2.00

Best Tour !

Tour Length Limit: C=4

Table 14: Counter Example - Best Tour - Optimal Schedules

Obj.Val Day 1 Day 2 Day 3 Day 4 Day 5

17.20 C B C B C

17.20 B C B C B

17.12 A B C B C

17.12 A C B C B

17.05 B C A B C

17.05 C B A C B

17.04 B A C B C

17.04 C A B C B

Parameters used: T=5 time steps, decay factor q=0.9

78



Figure 22 shows the basic setting of the example. There are �ve nodes in
addition to the depot, who are treated with the Euclidean distance measure.
Furthermore, the candidate tours are already mapped because they play a
major role in this counter example. As noted in Table 13, the maximum per-
missible tour length is C = 4. It summarizes which tours include which nodes
and emphasizes the (intentional) strong imbalance of the weights. Tour A
has a slightly higher score than tour B and tour C, so A is the best tour
in this example. The tour value, which is equal to the pro�t of the tour in
the setting of T = 1, does not factor in the overlap between the tours. In
the light of overlap, tour B and tour C have a great synergy because they
have disjoint sets of visited nodes (except for the depot), whereas tour A has
an overlap of 1 node with both B and C. Due to the weight imbalance this
accounts for roughly one half of its tour value and making it less e�cient. For
T = 5 time steps and n = 3 there are 35 = 243 possible schedule and Table
14 shows the top eight ranked by their objective value. As can be seen there
are pairs of schedules with same objective value and exchanged roles of tour
B and tour C. The reason for that is that B and C have the same properties,
especially same tour value and same overlap to other tours. The top pair
schedule consists of alternating tour B and tour C, noticeably missing tour
A. As has been noted, tour A is slightly ahead in terms of tour value but
less e�cient due to high overlap. Tour B and C complement each other in a
convenient way. Given these points, it is not surprising that in this case tour
A is not included in the optimal schedule. As a result, excluding schedules
not involving the best tour cannot be used to accelerate an exact algorithm
for the MPOP.

79



Appendix A

Table 15: Used Symbols and Variables A-S

#Assign number of solved LAPs

#TSP number of solved TSPs

ACO Ant Colony Optimization

ACS Ant Colony System

B(k) boundary condition for k node visits

lower bound for the tour length of shortest tour with k node visits

C tour length limit, constraint level

D matrix of distances

dij distance of node i and node j

d0i,N i-th order statistic of depot distances

G number of grid points

gi grid points

LP, ILP (Integer) Linear Programming

k number of node visits

L length of a tour

LAP Linear Assignment Problem

mi distance from node i to nearest distinct node (excluding depot)

mj,N j-th order statistic of the mi's

MPOP Multi-Period Orienteering Problem

N number of nodes

n number of candidate tours

NV number of node visits of a tour

NVmax highest possible number of node visits

for given distance matrix and tour length limit

OC(q) optimality function that for �xed C assigns optimal objective value to q

OP Orienteering Problem

q decay factor that controls the value process of unvisited nodes (see zti)

S1, S2, S3 strategies to decide when to use LAP and TSP representation of the problem

STSP Selective Traveling Salesman Problem

SVRP Selective Vehicle Routing Problem

SVRPTW Selective Vehicle Routing Problem with Time Windows

80



Table 16: Used Symbols and Variables T-Z

T number of time steps

TOP Team Orienteering Problem

TSP Travelling Salesman Problem

TSSP+1 Traveling Salesman Subtour Problem with 1 additional constraint

ut
i auxiliary variable that is used for subtour elimination

corresponds to position of node i in time step t

VRP Vehicle Routing Problem

VRPTW Vehicle Routing Problem with Time Windows

VNS Variable Neighborhood Search

wi weight of node i, measures pro�tability of node i

Xt
ij indicator that tells if node j follows immediately after node i in time step t

yti indicator that tells if node i is visited in time step t

zti value of node i in time step t

81



Appendix B

The following pages include the R code for the main functions regarding
the proposed algorithm. The execution requires R and the installation of
four extra packages (�rst four lines of code). The concorde software has to be
separately downloaded from http://www.math.uwaterloo.ca/tsp/concorde/ .
Additionally, non-Unix operating systems need a UNIX-emulating software
such as Cygwin for Windows.

require ( " adagio " ) # LP solv ing
require ( " igraph " ) # graph p lo t t ing
require ( " shape" ) # graphics ( including customizable arrows)
require ( "TSP" ) # TSP solv ing

capture . output ( concorde_path ( "your_concorde_i n s t a l l a t i o n_f o l d e r " ) , f i l e='NUL' )

# f i l e ='NUL' only works on windows

#### Generate a set of points in a square by uniform di s t r i bu t ion ####

get_datapo ints <− function (n , lower=0, upper=1){

datapo ints <− round(matrix ( runif (2∗(n+1) ,min=lower ,max=upper ) , n+1 ,2) ,2)
datapo ints [ 1 , ] <− rep ( ( lower+upper )/2 ,2)
rownames( datapo ints ) <− 0 : n
colnames ( datapo ints ) <− c ( "x" , "y" )
return ( datapo ints )

}

#### Calculating optimal Tours ( s ing l e assignment ) ####

opt imal tours <− function ( d i s tances , maxlength , prec=3){
d i s t an c e s <− as .matrix ( d i s t anc e s )
n <− nrow( d i s t anc e s )−1
rownames( d i s t anc e s ) <− colnames ( d i s t anc e s ) <− 0 : n
nonze rod i s t <− d i s t an c e s [−1 ,−1] # distances between nodes , that are not the base
z e r o d i s t <− d i s t an c e s [−1 ,1] # distances from zero to other nodes

i f (n>=2){
mindist <− sort (apply ( nonzerod i s t , 1 , sort , p a r t i a l =2) [ 2 , ] ,F)

# distance for every node to i t s nearest neighbour
zeromins <− sort ( z e r od i s t , p a r t i a l =2 ) [ 1 : 2 ] # 2 smal lest of these distances
kmaximum <− function (maxlength , mindist , zeromins ){ # computing maximum number of nodes

i f (sum( zeromins)>maxlength ) return (0 )
k <− n
cum .min <− c (0 ,cumsum( mindist [ −1 ] ) )
while (cum .min [ k]+sum( zeromins)>maxlength ){

k <− k−1
}
return ( k )

}
kmax <− max(kmaximum(maxlength , mindist , zeromins ) , 2 )
} else {kmax <− 1}

a s s i gn . c o s t s <− f loor ( d i s t anc e s∗10^prec )
a s s i gn . c o s t s <− a s s i gn . c o s t s + diag (n+1)∗4∗max( a s s i gn . c o s t s )

opttours <− l i s t ( ) # opttours includes the se t s of ver t i ces (unordered ) ( be t ter for checking subroutes )
opttours2 <− l i s t ( ) # opttours2 includes tours in r igh t order (needed for execution of tours )
k <− kmax
count1<<−0
count2<<−0
use . ass ignment <− T

opentours <− l i s t ( )
while (k>1&use . ass ignment==T){

tours <− as . data . frame (combn(n , k ) ) # a l l poss ib l e routes with k ver t i ces
for ( i in 1 : ncol ( tours ) ){

ind <− 1+c (0 , tour s [ , i ] )
s o l <− assignment ( a s s i gn . c o s t s [ ind , ind ] )
count1<<−count1+1
i f ( s o l$min∗10^−prec<=maxlength ) {use . assignment <− F; opentours [ [ length ( opentours )+1 ] ]<− tours [ , i ] }

# i f assignment i s poss ib le , need to compute the TSP
}
k <− k−1

}

82



i f (kmax>1&length ( opentours )>0){
tours <− as . data . frame ( opentours ) # check opentours
for ( i in 1 : ncol ( tours ) ){

ind <− 1+c (0 , tour s [ , i ] )
suppressWarnings ( s o l <− solve_TSP(TSP( d i s t an c e s [ ind , ind ] ) , method=" concorde " ,

control=l i s t ( p r e c i s i o n=prec , verbose=F) ) )
count2<<−count2+1
i f ( attr ( so l , " tour_l ength ")<=maxlength ){

opttours [ [ length ( opttours )+1 ] ] <− tours [ , i ]
opttours2 [ [ length ( opttours2 )+1 ] ] <− as .numeric ( attr ( so l , "names" )) [ −1 ]

}
}

}

while (k>1){
tours <− as . data . frame (combn(n , k ) ) # a l l poss i b l e routes with k ver t i ces
i f ( length ( opttours )>0){ p a r t i a l t o u r s <− NULL
for ( i in 1 : length ( opttours ) ){

p a r t i a l t o u r s <− cbind ( p a r t i a l t ou r s , combn(x=opttours [ [ i ] ] ,m=k ) )
}
p a r t i a l t o u r s <− as . data . frame ( p a r t i a l t o u r s ) # subroutes of known optimal routes
tours <− tours [ , i s .na(match( tours , p a r t i a l t o u r s ) ) ]

# routes , that are not subroutes of known optimal routes
}
i f ( length ( tours )==0) return ( opttours2 ) # stopping cr i ter ion
i f ( i s . vector ( tours ) ) tours <− as . data . frame ( tours ) # ncol does not work on vectors
for ( i in 1 : ncol ( tours ) ){

ind <− 1+c (0 , tour s [ , i ] )
suppressWarnings ( s o l <− solve_TSP(TSP( d i s t an c e s [ ind , ind ] ) , method=" concorde " ,

control=l i s t ( p r e c i s i o n=prec , verbose=F) ) )
count2<<−count2+1
i f ( attr ( so l , " tour_l ength ")<=maxlength ){

opttours [ [ length ( opttours )+1 ] ] <− tours [ , i ]
opttours2 [ [ length ( opttours2 )+1 ] ] <− as .numeric ( attr ( so l , "names" )) [ −1 ]

}
}
k <− k−1

} # concorde accepts only TSPs with >=3 nodes

tours <− as . data . frame (combn(n , 1 ) )
i f ( length ( opttours )>0){ p a r t i a l t o u r s <− NULL
for ( i in 1 : length ( opttours ) ){

p a r t i a l t o u r s <− cbind ( p a r t i a l t ou r s , combn(x=opttours [ [ i ] ] ,m=1))
}
p a r t i a l t o u r s <− as . data . frame ( p a r t i a l t o u r s ) # subroutes of known optimal routes
tours <− tours [ , i s .na(match( tours , p a r t i a l t o u r s ) ) ]

# routes , that are not subroutes of known optimal routes
}
i f ( length ( tours )==0) return ( opttours2 ) # stopping cr i ter ion
i f ( i s . vector ( tours ) ) tours <− as . data . frame ( tours )

# tours w i l l be a vector i f only 1 column is se lec ted
for ( i in 1 : ncol ( tours ) ){

i f (2∗d i s t an c e s [1 ,1+ tours [ , i ]]<=maxlength ){ opttours [ [ length ( opttours )+1 ] ] <− tours [ , i ]
opttours2 [ [ length ( opttours2 )+1 ] ] <− tours [ , i ]

}
}

return ( opttours2 )
}

#### Calculating optimal Tours ( double assignment ) ####

opt imal tours_2a <− function ( d i s tances , maxlength , prec=3){

d i s t an c e s <− as .matrix ( d i s t anc e s )
n <− nrow( d i s t anc e s )−1
rownames( d i s t anc e s ) <− colnames ( d i s t anc e s ) <− 0 : n
nonze rod i s t <− d i s t an c e s [−1 ,−1] # distances between nodes , that are not the base
z e r o d i s t <− d i s t an c e s [−1 ,1] # distances from zero to other nodes

i f (n>=2){
mindist <− sort (apply ( nonzerod i s t , 1 , sort , p a r t i a l =2) [ 2 , ] ,F)

# distance for every node to i t s nearest neighbour
zeromins <− sort ( z e r od i s t , p a r t i a l =2 ) [ 1 : 2 ] # 2 smal lest of these distances

kmaximum <− function (maxlength , mindist , zeromins ){ # computing maximum number of nodes
i f (sum( zeromins)>maxlength ) return (0 )
k <− n
cum .min <− c (0 ,cumsum( mindist [ −1 ] ) )
while (cum .min [ k]+sum( zeromins)>maxlength ){

k <− k−1
}
return ( k )

}

83



kmax <− max(kmaximum(maxlength , mindist , zeromins ) , 2 )
} else {kmax <− 1}

a s s i gn . c o s t s <− f loor ( d i s t anc e s∗10^prec )
a s s i gn . c o s t s <− a s s i gn . c o s t s + diag (n+1)∗4∗max( a s s i gn . c o s t s )

opttours <− l i s t ( ) # opttours includes the s tes of ver t i ces ( be t ter for checking subroutes )
opttours2 <− l i s t ( ) # opttours2 includes tours in r igh t order (needed for execution )
k <− kmax
count1<<−0
count2<<−0
use . ass ignment <− T

opentours <− l i s t ( )
while (k>1&use . ass ignment==T){

tours <− as . data . frame (combn(n , k ) ) # a l l poss i b l e routes with k ver t i ces
for ( i in 1 : ncol ( tours ) ){

ind <− 1+c (0 , tour s [ , i ] )
s o l <− assignment ( a s s i gn . c o s t s [ ind , ind ] )
count1<<−count1+1
i f ( s o l$min∗10^−prec<=maxlength ) {

use . ass ignment <− F; opentours [ [ length ( opentours )+1 ] ] <− tours [ , i ]
} # i f assignment i s poss ib le , need to compute the TSP

}
k <− k−1

}

### second assignment s tar t

opentours2 <− l i s t ( )
i f (k>1){

tours <− as . data . frame (combn(n , k ) ) # a l l poss i b l e routes with k ver t i ces
for ( i in 1 : ncol ( tours ) ){

ind <− 1+c (0 , tour s [ , i ] )
s o l <− assignment ( a s s i gn . c o s t s [ ind , ind ] )
count1<<−count1+1
i f ( s o l$min∗10^−prec<=maxlength ) { opentours2 [ [ length ( opentours2 )+1 ] ] <− tours [ , i ] }

# i f assignment i s poss ib le , need to compute the TSP
}
k <− k−1

}

### second assignment end

i f (kmax>1&length ( opentours )>0){
tours <− as . data . frame ( opentours ) # check opentours
for ( i in 1 : ncol ( tours ) ){

ind <− 1+c (0 , tour s [ , i ] )
suppressWarnings ( s o l <− solve_TSP(TSP( d i s t an c e s [ ind , ind ] ) , method=" concorde " ,

control=l i s t ( p r e c i s i o n=prec , verbose=F) ) )
count2<<−count2+1
i f ( attr ( so l , " tour_l ength ")<=maxlength ){

opttours [ [ length ( opttours )+1 ] ] <− tours [ , i ]
opttours2 [ [ length ( opttours2 )+1 ] ] <− as .numeric ( attr ( so l , "names" )) [ −1 ]

}
}

}

i f (kmax>1&length ( opentours2 )>0){
tours <− as . data . frame ( opentours2 ) # check opentours2
i f ( length ( opttours )>0){ p a r t i a l t o u r s <− NULL

for ( i in 1 : length ( opttours ) ){
p a r t i a l t o u r s <− cbind ( p a r t i a l t ou r s , combn(x=opttours [ [ i ] ] ,m=k+1))

}
p a r t i a l t o u r s <− as . data . frame ( p a r t i a l t o u r s ) # subroutes of known optimal routes
tours <− tours [ , i s .na(match( tours , p a r t i a l t o u r s ) ) ]

# routes , that are not subroutes of known optimal routes
}
i f ( i s . vector ( tours ) ) tours <− as . data . frame ( tours ) # ncol doesn ' t work on vectors
i f (ncol ( tours )>0){
for ( i in 1 : ncol ( tours ) ){

ind <− 1+c (0 , tour s [ , i ] )
suppressWarnings ( s o l <− solve_TSP(TSP( d i s t an c e s [ ind , ind ] ) , method=" concorde " ,

control=l i s t ( p r e c i s i o n=prec , verbose=F) ) )
count2<<−count2+1
i f ( attr ( so l , " tour_l ength ")<=maxlength ){

opttours [ [ length ( opttours )+1 ] ] <− tours [ , i ]
opttours2 [ [ length ( opttours2 )+1 ] ] <− as .numeric ( attr ( so l , "names" )) [ −1 ]

}
}

}
}

84



while (k>1){
tours <− as . data . frame (combn(n , k ) ) # a l l poss i b l e routes with k ver t i ces
i f ( length ( opttours )>0){ p a r t i a l t o u r s <− NULL
for ( i in 1 : length ( opttours ) ){

p a r t i a l t o u r s <− cbind ( p a r t i a l t ou r s , combn(x=opttours [ [ i ] ] ,m=k ) )
}
p a r t i a l t o u r s <− as . data . frame ( p a r t i a l t o u r s ) # subroutes of known optimal routes
tours <− tours [ , i s .na(match( tours , p a r t i a l t o u r s ) ) ]

# routes , that are not subroutes of known optimal routes
}
i f ( length ( tours )==0) return ( opttours2 ) # stopping cr i ter ion
i f ( i s . vector ( tours ) ) tours <− as . data . frame ( tours ) # ncol does not work on vectors
for ( i in 1 : ncol ( tours ) ){

ind <− 1+c (0 , tour s [ , i ] )
suppressWarnings ( s o l <− solve_TSP(TSP( d i s t an c e s [ ind , ind ] ) , method=" concorde " ,

control=l i s t ( p r e c i s i o n=prec , verbose=F) ) )
count2<<−count2+1
i f ( attr ( so l , " tour_l ength ")<=maxlength ){

opttours [ [ length ( opttours )+1 ] ] <− tours [ , i ]
opttours2 [ [ length ( opttours2 )+1 ] ] <− as .numeric ( attr ( so l , "names" )) [ −1 ]

}
}
k <− k−1

} # "concorde" accepts only TSPs with >=3 nodes

tours <− as . data . frame (combn(n , 1 ) )
i f ( length ( opttours )>0){ p a r t i a l t o u r s <− NULL
for ( i in 1 : length ( opttours ) ){

p a r t i a l t o u r s <− cbind ( p a r t i a l t ou r s , combn(x=opttours [ [ i ] ] ,m=1))
}

p a r t i a l t o u r s <− as . data . frame ( p a r t i a l t o u r s ) # subroutes of known optimal routes
tours <− tours [ , i s .na(match( tours , p a r t i a l t o u r s ) ) ]
# routes , that are not subroutes of known optimal routes

}
i f ( length ( tours )==0) return ( opttours2 ) # stopping cr i ter ion
i f ( i s . vector ( tours ) ) tours <− as . data . frame ( tours )

# tours w i l l be a vector i f only 1 column is se lec ted
for ( i in 1 : ncol ( tours ) ){

i f (2∗d i s t an c e s [1 ,1+ tours [ , i ]]<=maxlength ){ opttours [ [ length ( opttours )+1 ] ] <− tours [ , i ]
opttours2 [ [ length ( opttours2 )+1 ] ] <− tours [ , i ]

}
}

return ( opttours2 )
}

### Enumerate

enumerate <− function ( poss . tours , n , rounds=5, weights=1, decay=0.9){
nposs <− length ( poss . tours ) # nposs number of poss ib l e tours
l <− l i s t ( ) # l i s t helps to create grid with a l l combinations
for ( i in 1 : rounds ){ l [ [ i ] ] <− 1 : nposs }
combs <− expand . grid ( l ) # dataframe with a l l combinations
colnames ( combs )<− paste ( "Vx" , 1 : ncol ( combs ) , sep="" )
obj . va l <− numeric (1 )
weights <− weights∗rep (1 , t imes=n)

poss .mat <− matrix (NA,nrow=nposs , ncol=n) # matrix for easier handling of poss ib l e tours
for ( i in 1 : nposs ){

poss .mat [ i , ] <− table ( factor ( poss . tours [ [ i ] ] , levels=1:n ) )
}

i f ( rounds==1){obj . va l <− as . vector ( poss .mat%∗%weights )}

i f ( rounds >1){
i f ( length ( poss . tours )>1){

d i f f s <− t (apply ( combs , 1 , d i f f ) )
i f ( rounds==2) d i f f s <− t ( d i f f s )
best_ind <− which ( poss .mat%∗%weights==max( poss .mat%∗%weights ) )
i f ( length ( best_ind )>1) { combs <− combs [ apply ( d i f f s ^2 ,1 ,min) >0 ,]

} else { combs <− combs [ rowSums ( ( d i f f s ==0)∗( combs [ ,−1] !=best_ind ))==0 ,]

# =0, i f there are no double tours or they are both the "best " tour
}

}

for ( j in 1 :nrow( combs ) ){ # evaluating each combination
obj . va l [ j ] <− eva luate ( index=unlist ( combs [ j , ] ) , poss .mat ,weights , decay )

}
}

return (cbind ( obj . val , combs ) [ obj . va l==max( obj . va l ) , ] )
}

85



### Evaluate

eva luate <− function ( index , poss .mat , weights , decay=0.9){
objperround <− numeric ( length ( index ) )
program <− poss .mat [ index , ]
status <− rep (1 , t imes=length (weights ) )

i f ( sd (weights)==0){
for ( i in 1 : length ( index ) ){

objperround [ i ] <− program [ i , ]%∗%status
status [ as . log ica l ( program [ i , ] ) ] <− 0
status <− status∗decay
status <− status +1

}}

i f ( sd (weights ) !=0){
for ( i in 1 : length ( index ) ){

objperround [ i ] <− ( program [ i , ] ∗weights )%∗%status
status [ as . log ica l ( program [ i , ] ) ] <− 0
status <− status∗decay
status <− status +1

}}

return (sum( objperround ) )
}

### Complete function so lve_ori

solve_o r i <− function ( d i s tances , maxlength , rounds=5,weights=1,decay=0.9 , prec=6, input . tours=NULL){

n <− nrow( as .matrix ( d i s t anc e s ))−1
weights <− weights∗rep (1 , t imes=n)
i f e l s e ( i s . l i s t ( input . tour s ) , poss . tour s <− input . tours ,

poss . tours <− opt imal tours_2a ( d i s tance s , maxlength , prec )

)
i f ( length ( poss . tours )==0) return ( l i s t ( "Object ive Value"=0," Schedule "=NULL, "Scheme"=NULL,

"Maximum Length"=maxlength , "Weights"=weights , "Decay"=decay ) )

s o l <− enumerate ( poss . tours , n , rounds , weights=weights , decay=decay )
schedu le <− as .matrix ( s o l [ ,−1])
rownames( schedu le ) <− 1 :nrow( schedu le )
colnames ( schedu le ) <− paste ( "Day" , 1 : rounds )
scheme <− schedu le

for ( i in 1 : length ( poss . tours ) ){
schedu le [ schedu le==i ] <− paste ( poss . tours [ [ i ] ] , sep=" " , c o l l a p s e=" " )

}

r e s <− l i s t ( "Object ive Value"=s o l [ 1 , 1 ] , " Schedule "=schedule , "Scheme"=scheme ,
"Maximum Length"=maxlength , "Weights"=weights , "Decay"=decay )

return ( r e s )
}

#### Plot the so lut ion ####

plot_s o l <− function ( datapoints , tour=NA, xlim=c ( −0 .05 ,1 .05) , ylim=c ( −0 .05 ,1 .05) ,main="" ){

par (mar=c ( 2 , 2 , 2 , 1 ) )
n <− nrow( datapo ints )−1
i f ( ! i s . null ( xlim ) ) plot (matrix ( datapo ints [−1 , ] , ncol=2) , xlim=xlim , ylim=ylim , main=main , cex=1.3)
i f ( i s . null ( xlim ) ) plot (matrix ( datapo ints [−1 , ] , ncol=2) , cex =1.3 ,main=main )
points ( t ( datapo ints [ 1 , ] ) , col="red" , pch=16, cex =1.5)
text ( datapoints , labels=rownames( datapo ints ) , adj=c ( 0 . 5 , −0.5))

i f ( ! i s .na( tour [ 1 ] ) ) {
i f ( i s . character ( tour ) ) tour <− as .numeric ( s t r sp l i t ( tour , sp l i t=" " ) [ [ 1 ] ] )
ind <− c (0 , tour ,0)+1
i f e l s e (n==1,code<−3 , code<−2)

for ( i in 1 : ( n+1)){
Arrows ( x0=datapo ints [ ind [ i ] , 1 ] , y0=datapo ints [ ind [ i ] , 2 ] ,

x1=datapo ints [ ind [ i +1 ] , 1 ] , y1=datapo ints [ ind [ i +1 ] , 2 ] ,
lwd=1, ar r . length=0.25 , a r r . adj=1, code=code )

}
}

}

plot_s o l 2 <− function ( datapoints , tour=NA, names=NULL, asp=1){

n <− nrow( datapo ints )−1
mat <− matrix (0 ,nrow=n+1,ncol=n+1)
colnames (mat) <− names

86



i f ( ! i s .na( tour [ 1 ] ) ) {
i f ( i s . character ( tour ) ) tour <− as .numeric ( s t r sp l i t ( tour , sp l i t=" " ) [ [ 1 ] ] )
ind <− c (0 , tour ,0)+1

for ( i in 1 : length ( ind ) ){
mat [ ind [ i ] , ind [ i +1] ] <− 1

}
}
graph <− graph . adjacency (mat ,mode=" d i r e c t ed " ,weighted=NULL)
plot ( graph , layout=geocoords , asp=asp , ver tex . l a b e l . c o l o r="black " , ver tex . c o l o r=rainbow (10 , s =0 . 8 ) [ 1 0 : 1 ] )

}

#### Calculate Tour length ####

tour l ength <− function ( tour , d i s t anc e s ){
i f ( i s . character ( tour ) ) tour <− as .numeric ( s t r sp l i t ( tour , sp l i t=" " ) [ [ 1 ] ] )
d i s t an c e s <− as .matrix ( d i s t anc e s )
tour l ength <− d i s t an c e s [ 1 , tour [1]+1]+ d i s t anc e s [ 1 , rev ( tour ) [ 1 ]+1 ] # f i r s t + l a s t edge

for ( i in 1 : ( length ( tour )−1) ){
tour l ength <− tour l ength + d i s t anc e s [ tour [ i ]+1 , tour [ i +1]+1] # adding remaining edges

}
return ( tour l ength )

}

#### Renaming tour re su l t s with i n i t i a l vertex names ( c i ty names) ####

vertexnames <− function ( tour , vertexnames ){
i f ( ! i s . l i s t ( tour )&is . character ( tour ) ) r e s <− s t r sp l i t ( tour , sp l i t=" " )
i f ( ! i s . l i s t ( tour )&! i s . character ( tour ) ) r e s <− tour <− l i s t ( tour )
i f ( i s . l i s t ( tour ) ) r e s <− tour
for ( i in 1 : length ( tour ) ){

r e s [ [ i ] ] <− as .numeric ( r e s [ [ i ] ] )
for ( j in 1 : length ( vertexnames ) ){

r e s [ [ i ] ] [ r e s [ [ i ]]== j ] <− vertexnames [ j ]
}

}
return ( r e s )

}

87



References

[1] Applegate, D., Cook, W., Dash, S., Rohe, A. (2002)
"Solution of a min-max vehicle routing problem"
INFORMS Journal on Computing, Vol. 14 Issue 2, 132-143

[2] Bellman, R. (1958)
"On A Routing Problem"
Quarterly of Applied Mathematics (Brown University)
Volume 16, No. 1, 87-90

[3] Boussier, S., Feillet, D. & Gendreau (2007)
"An exact algorithm for team orienteering problems"
4OR, Vol. 5, Issue 3, 211-230

[4] Chao, I., Golden, B.L., Wasil, E.A. (1996)
"A fast and effective heuristic for the orienteering problem"
European Journal of Operational Research, Vol. 88, 475-489

[5] Croes, G.A. (1958)
"A method for solving traveling salesman problems"
American Journal of Operations Research, Vol. 6 , 791-812

[6] Glover, F. (1986)
"Future paths for integer programming and links to artificial
intelligence"
Computers & Operations Research, Vol. 13, Issue 5, 533-549

[7] Golden, B.L., Levy, L., Vohra, R. (1987)
"The orienteering problem"
Naval Research Logistics, Vol. 34, 307-318

[8] Golden, B.L., Wang, Q., Lyu, L. (1988)
"A multifaceted heuristic for the orienteering problem"
Naval Research Logistics, Vol. 35, 359-366

[9] Gueguen, C., (1999)
"Methodes de résolution exacte pour problémes de tournées
de véhicules"
Doctoral Dissertation, Ecole Centrale Paris

88



[10] Gunawan, A., Lau, H. C.,Vansteenwegen, P. (2016)
"Orienteering Problem: A survey of recent variants,
solution approaches and applications"
European Journal of Operational Research
Vol. 255, Issue 2, 315-332

[11] Harvey, W., Ginsberg, M., (1995)
"Limited discrepancy search"
Proceedings of the 14th international joint conference on
artificial intelligence, Montreal, Vol. 1, 607-615

[12] Keller, C.P. (1989)
"Algorithms to solve the orienteering problem: A comparison"
European Journal of Operational Research, Vol. 41, 224-231

[13] Kruskal, J.B. (1964)
"Multidimensional scaling by optimizing goodness of fit to
a nonmetric hypothesis"
Psychometrika Vol. 29, 1-27

[14] Laporte, G., Martello, S. (1990)
"The Selective Traveling Salesman Problem"
Discrete Applied Mathematics, Vol. 26, 193-207

[15] Miller, C. E., Tucker, A. W., Zemlin, R. A. (1960)
"Integer programming formulations and travelling salesman problems"
Journal of the Association for Computing Machinery Vol. 7, 326-329

[16] Montemanni, R., Gambardella, L. M. (2009)
"Ant Colony System for Team Orienteering Problems with Time Windows"
Foundations of Computing and Decision Sciences, Vol. 34, 287-306

[17] Pillai, R.S. (1992)
"The traveling salesman subset-tour problem with one additional
constraint (TSSP+ 1)"
Doctoral Dissertation, The University of Tennessee (Knoxville)

[18] Ramesh, R., Brown, K.M. (1991)
"An efficient four-phase heuristic for the generalized
orienteering problem"
Computers & Operations Research, Vol. 18, Issue 2, 151-165

89



[19] Rosenkrantz, D. J., Stearns, R. E., Lewis, P. M., (1977)
"An analysis of several heuristics for the
traveling salesman problem"
SIAM Journal on Computing Vol. 6, Issue 3, 563-581

[20] Sokkappa, P.R. (1990)
"The cost-constrained traveling salesman problem"
Doctoral Dissertation, The University of California (Livermore)

[21] Tang, H., Miller-Hooks, E., (2005)
"A TABU search heuristic for the team orienteering problem"
Computers and Operations Research, Vol. 32, Issue 6, 1379-1407

[22] Tricoire, F., Romauch, M., Doerner, K. F., Hartl, R. F. (2010)
"Heuristics for the multi-period orienteering problem
with multiple time windows"
Computers & Operations Research, Vol. 37, 351-367

[23] Tsiligirides, T. (1984)
"Heuristic Methods Applied to Orienteering"
Journal of the Operational Research Society, Vol. 35, No. 9, 797-809

[24] Wren, A., Holliday, A. (1972)
"Computer scheduling of vehicles for one or more depots
to a number of delivery points"
Operational Research Quarterly, Vol. 23, 333-344

Online Sources

[25] City distances (Jan 21st 2017 12:00)
https://www.google.at/maps/dir///@47.7038659,11.0605785,7z

[26] Geographic coordinates for Austrian cities (Mar 1st 2017 13:00)
http://www.city-coordinates.net/home/1_oesterreich

[27] Geographic coordinates for Munich (Mar 1st 2017 13:00)
http://www.gpskoordinaten.de/

[28] Number of inhabitants (Mar 1st 2017 13:00)
https://www.citypopulation.de/Oesterreich-Cities_d.html
https://www.citypopulation.de/Deutschland-Cities_d.html

90


	Introduction
	Problem Description
	Related Literature
	Heuristics
	Exact Algorithms

	The Multi-Period Orienteering Problem
	Notation and Mathematical Problem Formulation
	Tour Length Distribution

	The Algorithm
	Structure
	Finding Candidate Tours
	Upper Bounds for Number of Nodes
	Evaluation and Elimination
	Linear Assignment
	Runtime Analysis

	Determine Optimal Schedule

	Application Example
	Data Description
	Network
	Results
	Parameter Sensitivity
	Runtimes for more Time Steps


	Conclusions
	Appendix A
	Appendix B

