Titel
Isoperimetry, Scalar Curvature, and Mass in Asymptotically Flat Riemannian 3‐Manifolds
Autor*in
Otis Chodosh
Department of Mathematics, Stanford University
Autor*in
Yuguang Shi
Key Laboratory of Pure and Applied Mathematics, School of Mathematical Sciences, Peking University
... show all
Abstract
Let (M, g) be an asymptotically flat Riemannian 3-manifold with nonnegative scalar curvature and positive mass. We show that each leaf of the canonical foliation of the end of (M, g) through stable constant mean curvature spheres encloses more volume than any other surface of the same area. Unlike all previous characterizations of large solutions of the isoperimetric problem, we need no asymptotic symmetry assumptions beyond the optimal conditions for the positive mass theorem. This generality includes examples where global uniqueness of the leaves of the canonical foliation as stable constant mean curvature spheres fails dramatically. Our results here resolve a question of G. Huisken on the isoperimetric content of the positive mass theorem.
Stichwort
Applied MathematicsGeneral Mathematics
Objekt-Typ
Sprache
Englisch [eng]
Erschienen in
Titel
Communications on Pure and Applied Mathematics
Band
74
Ausgabe
4
ISSN
0010-3640
Erscheinungsdatum
2021
Seitenanfang
865
Seitenende
905
Publication
Wiley
Projekt
Kod / Identifikator
Y963-N35
Erscheinungsdatum
2021
Zugänglichkeit
Rechteangabe
© 2021 The Authors

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0