Titel
Harnack inequality and one-endedness of UST on reversible random graphs
Autor*in
Nathanaël Berestycki
Autor*in
Diederik van Engelenburg
Abstract
We prove that for recurrent, reversible graphs, the following conditions are equivalent: (a) existence and uniqueness of the potential kernel, (b) existence and uniqueness of harmonic measure from infinity, (c) a new anchored Harnack inequality, and (d) one-endedness of the wired uniform spanning tree. In particular this gives a proof of the anchored (and in fact also elliptic) Harnack inequality on the UIPT. This also complements and strengthens some results of Benjamini et al. (Ann Probab 29(1):1–65, 2001). Furthermore, we make progress towards a conjecture of Aldous and Lyons by proving that these conditions are fulfilled for strictly subdiffusive recurrent unimodular graphs. Finally, we discuss the behaviour of the random walk conditioned to never return to the origin, which is well defined as a consequence of our results.
Stichwort
Uniform spanning treeReversible random graphsHarnack inequalityPotential theory
Objekt-Typ
Sprache
Englisch [eng]
Erschienen in
Titel
Probability Theory and Related Fields
Band
188
Ausgabe
1-2
ISSN
0178-8051
Erscheinungsdatum
2023
Seitenanfang
487
Seitenende
548
Publication
Springer Science and Business Media LLC
Projekt
Kod / Identifikator
P33083
Erscheinungsdatum
2023
Zugänglichkeit
Rechteangabe
© The Author(s) 2023

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0