Titel
Regularization with metric double integrals for vector tomography
Abstract
We present a family of non-local variational regularization methods for solving tomographic problems, where the solutions are functions with range in a closed subset of the Euclidean space, for example if the solution only attains values in an embedded sub-manifold. Recently, in [R. Ciak, M. Melching and O. Scherzer, Regularization with metric double integrals of functions with values in a set of vectors, J. Math. Imaging Vision 61 2019, 6, 824–848], such regularization methods have been investigated analytically and their efficiency has been tested for basic imaging tasks such as denoising and inpainting. In this paper we investigate solving complex vector tomography problems with non-local variational methods both analytically and numerically.
Stichwort
Regularizationvector-valued datanon-convexmetricdouble integralfractional Sobolev spacetomography
Objekt-Typ
Sprache
Englisch [eng]
Erschienen in
Titel
Journal of Inverse and Ill-posed Problems
Band
28
Ausgabe
6
ISSN
1569-3945
Erscheinungsdatum
2020
Seitenanfang
857
Seitenende
875
Publication
Walter de Gruyter GmbH
Projekt
Kod / Identifikator
F6807-N36
Projekt
Kod / Identifikator
I3661-N27
Erscheinungsdatum
2020
Zugänglichkeit
Rechteangabe
© 2020 Melching and Scherzer

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0